Extraction, Characterization and Enzymatic Degumming of Banana Fiber

2020 ◽  
pp. 1-10
Author(s):  
Suresh Kumar Paramasivam ◽  
Divya Panneerselvam ◽  
Durgadevi Sundaram ◽  
Karur Nallappagounder Shiva ◽  
Uma Subbaraya
2019 ◽  
Author(s):  
Rajini N ◽  
Sathishkumar T.P. ◽  
Jegan M M. ◽  
Maheshkumar PON ◽  
Navaneethakrishnan P ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abayomi A. Akinwande ◽  
Adeolu A. Adediran ◽  
Oluwatosin A. Balogun ◽  
Oluwaseyi S. Olusoju ◽  
Olanrewaju S. Adesina

AbstractIn a bid to develop paper bricks as alternative masonry units, unmodified banana fibers (UMBF) and alkaline (1 Molar aqueous sodium hydroxide) modified banana fibers (AMBF), fine sand, and ordinary Portland cement were blended with waste paper pulp. The fibers were introduced in varying proportions of 0, 0.5, 1.0 1.5, 2.0, and 2.5 wt% (by weight of the pulp) and curing was done for 28 and 56 days. Properties such as water and moisture absorption, compressive, flexural, and splitting tensile strengths, thermal conductivity, and specific heat capacity were appraised. The outcome of the examinations carried out revealed that water absorption rose with fiber loading while AMBF reinforced samples absorbed lesser water volume than UMBF reinforced samples; a feat occasioned by alkaline treatment of banana fiber. Moisture absorption increased with paper bricks doped with UMBF, while in the case of AMBF-paper bricks, property value was noted to depreciate with increment in AMBF proportion. Fiber loading resulted in improvement of compressive, flexural, and splitting tensile strengths and it was noted that AMBF reinforced samples performed better. The result of the thermal test showed that incorporation of UMBF led to depreciation in thermal conductivity while AMBF infusion in the bricks initiated increment in value. Opposite behaviour was observed for specific heat capacity as UMBF enhanced heat capacity while AMBF led to depreciation. Experimental trend analysis carried out indicates that curing length and alkaline modification of fiber were effective in maximizing the properties of paperbricks for masonry construction.


Author(s):  
C. Veera ajay ◽  
K. Vignesh Ramamoorthy ◽  
V. Subash ◽  
R. Robinston ◽  
M. Ragashwar ◽  
...  
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 242
Author(s):  
Pablo Bordón ◽  
Rubén Paz ◽  
Carolina Peñalva ◽  
Gisela Vega ◽  
Mario Monzón ◽  
...  

Bags used to protect and accelerate the ripening of bananas are a clear example of the environmental problem of packaging waste. Small pieces of these non-biodegradable bags are frequently disposed on the soil by accident (environmental conditions and poor handling during the harvest) and remain there for years. This work focuses on the development of protective biodegradable bags reinforced with banana fiber, obtained from waste of the banana plants, thus promoting a circular economy and a more environmentally friendly process. To achieve this, different bio-based composites were tested (processability) by compounding extrusion (biopolymer and banana fiber with different process steps) and blown film extrusion. The bags produced were tested in field and sequentially improved in three generations of biofilms. The results showed that the maximum processable fiber content was 5 wt %. Additionally, the micronizing of the compounds was crucial to simplify the blown film extrusion and improve the smoothness of the bags (scratches avoidance on the banana surface). The final bags (Mater-Bi biopolymer, 5% combed and sieved banana fiber, and 2.5 wt % TiO2 for ultraviolet light filtration), performed better than the conventional ones (faster maturing, i.e., earlier harvest, and easier handling) and fulfilled the biodegradability, composting and ecotoxicity test requirements.


2021 ◽  
pp. 002199832098804
Author(s):  
TP Mohan ◽  
K Kanny

The objective of this work is to realize new polymer composite material containing high amount of natural fibers as a bio-based reinforcement phase. Short banana fiber is chosen as a reinforcement material and epoxy polymer as a matrix material. About 77 wt.% of banana fibers were reinforced in the epoxy polymer matrix composite, using pressure induced fiber dipping method. Nanoclay particles were infused into the banana fibers to improve the fiber matrix interface properties. The nanoclay infused banana fiber were used to reinforce epoxy composite and its properties were compared with untreated banana fiber reinforced epoxy composite and banana fiber reinforced epoxy filled with nanoclay matrix composite. The surface characteristics of these composites were examined by electron microscope and the result shows well dispersed fibers in epoxy matrix. Thermal (thermogravimetry analysis and dynamic mechanical analysis), mechanical (tensile and fiber pullout) and water barrier properties of these composites were examined and the result showed that the nanoclay infused banana fiber reinforced epoxy composite shows better and improved properties. Improved surface finish composite was also obtained by this processing technique.


Sign in / Sign up

Export Citation Format

Share Document