Cellulose Nanofibrils from Sugarcane Bagasse as a Reinforcing Element in Polyvinyl Alcohol Composite Films for Food Packaging

2020 ◽  
pp. 1-13
Author(s):  
Brian Victor Otenda ◽  
Patrick Gachoki Kareru ◽  
Edwin Shigwenya Madivoli ◽  
Ernest Gachui Maina ◽  
Sammy Indire Wanakai ◽  
...  
2018 ◽  
Vol 936 ◽  
pp. 105-109
Author(s):  
Kewalee Inna ◽  
Jackapon Sunthornvarabhas ◽  
Anusith Thanapimmetha ◽  
Maythee Saisriyoot ◽  
Penjit Srinophakun

Lignin was extracted from sugarcane bagasse using alkali treatment process. The antimicrobial activity of sugarcane bagasse lignin (LNB) was evaluated against two pathogenic bacteria, Staphylococcus aureus and Escherichia coli by broth dilution method. The MIC and MBC values of LNB are 10,000 μg/ml and 20,000 μg/ml, respestively in both pathogenic bacteria. The composite film between polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) blending with LNB at five different amounts (1%, 3%, 5%, 10% and 15%) were produced by solvent casting. The chemical interactions of composite films were investigated using FTIR. The IR spectra indicates the formation of strong intermolecular hydrogen bonds between the hydroxyl groups of PVA or PVP and lignin. Furthermore, the overall migration was investigated. The migration results revealed that the PVA films blending with lignin up to 3% and the PVP films blending with lignin up to 5% could be considered suitable for application in fatty food packaging field.


2021 ◽  
Author(s):  
Yamanappagouda Amaregouda ◽  
Kantharaju Kamanna ◽  
Tilak Gasti ◽  
Vijay Kumbar

Abstract Herein, we described novel biogenic preparation of the CuO nanorods and its surface modification with L-alanine amino acid accelerated by microwave irradiation. The effect of surface functionalized CuO nanorods on the polyvinyl alcohol/carboxymethyl cellulose film physico-mechanical properties were investigated through various characterization techniques. The tensile strength was improved from 28.58 ± 0.73 MPa to 43.40 ± 0.93 MPa, UV shielding ability and barrier to the water vapors were highly enhanced when PVA/CMC matrices filled with 8 wt% of CuO-L-alanine. In addition, the prepared films exhibited acceptable overall migration limit and readily undergoes soil burial degradation. Nevertheless, CuO-L-alanine incorporated films showed potent antioxidant activity against DPPH radicals and had high antibacterial activity against Staphylococcus aureus and Escherichia coli, and antifungal activity against Candida albicans and Candida tropicalis. Furthermore, the nanocomposite films showed negligible cytotoxic effect on HEK293 and Caco-2 cell lines. In these contexts, the developed nanocomposite films can be implementing as an active food packaging material.


2013 ◽  
Vol 829 ◽  
pp. 534-538 ◽  
Author(s):  
Alireza Shakeri ◽  
Sattar Radmanesh

Cellulose nanofibrils ( NF ) have several advantages such as biodegradability and safety toward human health. Zein is a biodegradable polymer with potential use in food packaging applications. It appears that polymer nanocomposites are one of the most promising applications of zein films. Cellulose NF were prepared from starting material Microcrystalline cellulose (MCC) by an application of a high-pressure homogenizer at 20,000 psi and treatment consisting of 15 passes. Methods such as atomic force microscopy were used for confirmation of nanoscale size production of cellulose. The average diameter 45 nm were observed. Zeincellulose NF nanocomposite films were prepared by casting ethanol suspensions of Zein with different amounts of cellulose NF in the 0% to 5%wt. The nanocomposites were characterized by using Fourier transform infrared spectroscopy ( FTIR ), Atomic force microscopy ( AFM ) and X-ray diffraction ( XRD ) analysis. From the FTIR spectra the various groups present in the Zein blend were monitored. The homogeneity, morphology and crystallinity of the blends were ascertained from the AFM and XRD data, respectively. The thermal resistant of the zein nanocomposite films improved as the nanocellulose content increased. These obtained materials are transparent, flexible and present significantly better physical properties than the corresponding unfilled Zein films.


2021 ◽  
Vol 30 ◽  
pp. 100742
Author(s):  
Pınar Terzioğlu ◽  
Fatma Güney ◽  
Fatma Nur Parın ◽  
İbrahim Şen ◽  
Sibel Tuna

Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2363 ◽  
Author(s):  
Xue Liang ◽  
Shiyi Feng ◽  
Saeed Ahmed ◽  
Wen Qin ◽  
Yaowen Liu

Composite films containing different amounts of potassium sorbate (KS) were prepared by using fish scale collagen (Col) and polyvinyl alcohol (PVA). Fourier transform infrared spectroscopy (FTIR), light transmittance, mechanical, water vapor transmission rate (WVTR), and the antibacterial properties of the composite films were analyzed. The results showed that the addition of Col significantly reduced the light transmittance of the composite film, but KS had no significant effect on the light transmission. The tensile strength decreased first and then increased with the addition of KS, while the WVTR increased first and then decreased. The composite film exhibited a certain degree of antibacterial properties against E. coli and S. aureus. In addition, we found that ultrasonic treatment reduced the WVTR, and also improved tensile strength and elongation at break of the composite films, but had no significant effect on other properties. The KS/Col/PVA films have the potential to be used as antimicrobial food packaging.


Sign in / Sign up

Export Citation Format

Share Document