Traffic state classification and prediction based on trajectory data

Author(s):  
Yu Yuan ◽  
Wenbo Zhang ◽  
Xun Yang ◽  
Yang Liu ◽  
Zhiyuan Liu ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5213 ◽  
Author(s):  
Donato Impedovo ◽  
Fabrizio Balducci ◽  
Vincenzo Dentamaro ◽  
Giuseppe Pirlo

Automatic traffic flow classification is useful to reveal road congestions and accidents. Nowadays, roads and highways are equipped with a huge amount of surveillance cameras, which can be used for real-time vehicle identification, and thus providing traffic flow estimation. This research provides a comparative analysis of state-of-the-art object detectors, visual features, and classification models useful to implement traffic state estimations. More specifically, three different object detectors are compared to identify vehicles. Four machine learning techniques are successively employed to explore five visual features for classification aims. These classic machine learning approaches are compared with the deep learning techniques. This research demonstrates that, when methods and resources are properly implemented and tested, results are very encouraging for both methods, but the deep learning method is the most accurately performing one reaching an accuracy of 99.9% for binary traffic state classification and 98.6% for multiclass classification.


Author(s):  
Paul B. C. van Erp ◽  
Victor L. Knoop ◽  
Erik-Sander Smits ◽  
Chris Tampère ◽  
Serge P. Hoogendoorn

Detector data can be used to construct cumulative flow curves, which in turn can be used to estimate the traffic state. However, this approach is subject to the cumulative error problem. Multiple studies propose to mitigate the cumulative error problem using probe trajectory data. These studies often assume “no overtaking” and thus that the cumulative flow is zero over probe trajectories. However, in multi-lane traffic this assumption is often violated. Therefore, we present an approach to estimate the change in cumulative flow along probe trajectories between detectors based on disaggregated detector data. The approach is tested with empirical data and in microsimulation. This shows that the approach is a clear improvement over assuming “no overtaking” in free-flow conditions. However, the benefits are not clear in varying traffic conditions. The approach can be applied in practice to mitigate the cumulative error problem and estimate the traffic state based on the resulting cumulative flow curves. As the performance of the approach depends on the changes in traffic conditions, it is suggested to use the probe speed observations between detectors to assign an uncertainty to the change in cumulative flow estimates. Furthermore, a potential option for future work is to use more elaborate schemes to estimate the probe relative flow between detectors, which may, for instance, combine probe speeds with estimates of the macroscopic states along the probe trajectory. If these macroscopic estimates are based on the cumulative flow curves at the detector locations, this would result in an iterative approach.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Qing-fang Yang ◽  
Ru-ru Xing ◽  
Li-li Zheng ◽  
Shu-xing Wang

In order to monitor the real-time operation condition of urban region traffic flow, and to quickly identify regional traffic status, this paper adopts CNM (Clauset-Newman-Moore) Community Division Method of Complex Network to analyze traffic status information deeply implied from the regional road network traffic flow data, which aims to objectively develop the reasonable classification of regional traffic state with no classification criteria of determining regional traffic state. Combined with the regional road network traffic data from a certain city, the example analysis shows that this proposed method can easily provide the reasonable division of regional traffic condition and verifies the feasibility of the regional traffic state classification method. Besides, the example analysis gives the rough regional traffic status determination standard, laying theoretical basis for accurately judging the regional traffic state.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zuyao Zhang ◽  
Li Tang ◽  
Yifeng Wang ◽  
Xuejun Zhang

2020 ◽  
pp. 1-12
Author(s):  
Hu Jingchao ◽  
Haiying Zhang

The difficulty in class student state recognition is how to make feature judgments based on student facial expressions and movement state. At present, some intelligent models are not accurate in class student state recognition. In order to improve the model recognition effect, this study builds a two-level state detection framework based on deep learning and HMM feature recognition algorithm, and expands it as a multi-level detection model through a reasonable state classification method. In addition, this study selects continuous HMM or deep learning to reflect the dynamic generation characteristics of fatigue, and designs random human fatigue recognition experiments to complete the collection and preprocessing of EEG data, facial video data, and subjective evaluation data of classroom students. In addition to this, this study discretizes the feature indicators and builds a student state recognition model. Finally, the performance of the algorithm proposed in this paper is analyzed through experiments. The research results show that the algorithm proposed in this paper has certain advantages over the traditional algorithm in the recognition of classroom student state features.


Sign in / Sign up

Export Citation Format

Share Document