scholarly journals Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress

Autophagy ◽  
2021 ◽  
pp. 1-14
Author(s):  
Jia-min Yan ◽  
Wen-kang Zhang ◽  
Li-na Yan ◽  
Yong-Jun Jiao ◽  
Chuan-min Zhou ◽  
...  
2020 ◽  
Author(s):  
Daniel Herp ◽  
Johannes Ridinger ◽  
Dina Robaa ◽  
Stephen A. Shinsky ◽  
Karin Schmidtkunz ◽  
...  

Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, esp. cancer. First HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement e.g. in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of the other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like spermine or spermidine. Hence, it also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin labelled acetyl spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10 mediated spermidine deacetylation in-vitro. Among those are potent inhibitors of neuroblastoma colony growth in culture that show accumulation of lysosomes, implicating disturbance of autophagic flux.


2020 ◽  
Vol 16 ◽  
Author(s):  
Zhixiong Xie ◽  
Tianyu Zhang ◽  
Cheng Zhong

Background: During chemotherapy, drugs can damage cancer cells’ DNA and cytomembrane structure, and then induce cell death. However, autophagy can increase the chemotherapy resistance of cancer cells, reducing the effect of chemotherapy. Objective: To block the autophagic flux in cancer cells, it is vital to enhance the anti-cancer efficacy of chemotherapy drugs; for this purpose, we test the gadolinium oxide nanoparticles (Gd2O3 NPs)’ effect on autophagy. Methods: The cytotoxicity of Gd2O3 NPs on HeLa cells was evaluated by a (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Then, monodasylcadaverine staining, immunofluorescence, immunoblot and apoptosis assay were conducted to evaluate the effect of Gd2O3 NPs on autophagy and efficacy of chemotherapy drugs in human ovarian cancer cells. Results: We found that Gd2O3 NPs, which have great potential for use as a contrast agent in magnetic resonance imaging, could block the late stage of autophagic flux in a dose-dependent manner and then cause autophagosome accumulation in HeLa cells. When co-treated with 8 μg/mL Gd2O3 NPs and 5 μg/mL cisplatin, the number of dead HeLa cells increased by about 20% compared with cisplatin alone. We observed the same phenomenon in cisplatin-resistant COC1/DDP cells. Conclusion: We conclude that Gd2O3 NPs can block the late stage of autophagic flux and enhance the cytotoxicity of chemotherapeutic drugs in human ovarian cancer cells. Thus, the nanoparticles have significant potential for use in both diagnosis and therapy of solid tumor.


2020 ◽  
Vol 20 (8) ◽  
pp. 982-988 ◽  
Author(s):  
Le-Le Zhang ◽  
Han Bao ◽  
Yu-Lian Xu ◽  
Xiao-Ming Jiang ◽  
Wei Li ◽  
...  

Background: Cassane-type diterpenoids are widely distributed in the medical plants of genus Caesalpinia. To date, plenty of cassane diterpenoids have been isolated from the genus Caesalpinia, and some of them were documented to exhibit multiple biological activities. However, the effects of these compounds on autophagy have never been reported. Objective: To investigate the effects and mechanisms of the cassane diterpenoids including Phanginin R (PR) on autophagy in Non-Small Cell Lung Cancer (NSCLC) A549 cells. Methods: Western blot analysis and immunofluorescence assay were performed to investigate the effects of the compounds on autophagic flux in A549 cells. The pathway inhibitor and siRNA interference were used to investigate the mechanism of PR. MTT assay was performed to detect cell viability. Results: PR treatment upregulated the expression of phosphatidylethanolamine-modified microtubule-associated protein Light-Chain 3 (LC3-II) in A549 cells. Immunofluorescence assay showed that PR treatment increased the production of red-fluorescent puncta in mRFP-GFP-LC3 plasmid-transfected cells, indicating PR promoted autophagic flux in A549 cells. PR treatment activated the c-Jun N-terminal Kinase (JNK) signaling pathway while it did not affect the classical Akt/mammalian Target of Rapamycin (mTOR) pathway. Pretreatment with the JNK inhibitor SP600125 or siRNA targeting JNK or c-Jun suppressed PR-induced autophagy. In addition, cotreatment with the autophagy inhibitor Chloroquine (CQ) or inhibition of the JNK/c-Jun signaling pathway increased PR-induced cytotoxicity. Conclusion: PR induced cytoprotective autophagy in NSCLC A549 cells via the JNK/c-Jun signaling pathway, and autophagy inhibition could further improve the anti-cancer potential of PR.


Sign in / Sign up

Export Citation Format

Share Document