Assessment of food waste biodegradability by biochemical methane potential tests

Author(s):  
Xue Qin ◽  
Weizhang Zhong ◽  
Rui Wang ◽  
Zaixing Li ◽  
Xiang Gao ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1952
Author(s):  
Ayobami Orangun ◽  
Harjinder Kaur ◽  
Raghava R. Kommalapati

The improper management of goat manure from concentrated goat feeding operations and food waste leads to the emission of greenhouse gasses and water pollution in the US. The wastes were collected from the International Goat Research Center and a dining facility at Prairie View A&M University. The biochemical methane potential of these two substrates in mono and co-digestion at varied proportions was determined in triplicates and processes were evaluated using two nonlinear regression models. The experiments were conducted at 36 ± 1 °C with an inoculum to substrate ratio of 2.0. The biomethane was measured by water displacement method (pH 10:30), absorbing carbon dioxide. The cumulative yields in goat manure and food waste mono-digestions were 169.7 and 206.0 mL/gVS, respectively. Among co-digestion, 60% goat manure achieved the highest biomethane yields of 380.5 mL/gVS. The biodegradabilities of 33.5 and 65.7% were observed in goat manure and food waste mono-digestions, while 97.4% were observed in the co-digestion having 60% goat manure. The modified Gompertz model is an excellent fit in simulating the anaerobic digestion of food waste and goat manure substrates. These findings provide useful insights into the co-digestion of these substrates.


Author(s):  
Roberta Arlêu Teixeira ◽  
Bárbara Almeida Bueno ◽  
Raquel Machado Borges ◽  
Jacqueline Rogéria Bringhenti

2003 ◽  
Vol 48 (8) ◽  
pp. 211-219 ◽  
Author(s):  
N.-H. Heo ◽  
S.-C. Park ◽  
J.-S. Lee ◽  
H. Kang

Biochemical methane potential (BMP) tests have been carried out to determine the anaerobic digestibility of the waste activated sludge (WAS) and the sludge pretreated by NaOH (PWAS). The optimal NaOH dosage was determined to be 45 meq NaOH/L. The maximum SCOD solubilization was 27.7, 31.4 and 38.3% at the temperatures of 25, 35 and 55°C respectively after 4 hours reaction. The final methane yield of simulated food waste (SFW) was 430 ml CH4/g VSadded, and those of PWAS (25°C), PWAS (35°C) and PWAS (55°C) was 274, 286 and 310 ml CH4/g VSadded respectively after 20 days. The figures were 66%, 73% and 88% higher than that of WAS. The methane production in anaerobic co-digestion is considerably affected by the fraction of SFW and PWAS in the feed. The anaerobic digestibility of the feed mixture (SFW with PWAS) is higher than that of the feed mixture (SFW with WAS). Anaerobic co-digestion of food waste with the PWAS is found to be an attractive option to reduce the solid waste volume with improved methane recovery.


2018 ◽  
Vol 71 ◽  
pp. 612-617 ◽  
Author(s):  
Shakira R. Hobbs ◽  
Amy E. Landis ◽  
Bruce E. Rittmann ◽  
Michelle N. Young ◽  
Prathap Parameswaran

Author(s):  
Zuhaib Siddiqui ◽  
N.J. Horan ◽  
Kofi Anaman

Biomethane production from processed industrial food waste (IFW) in admixture with sewage sludge (primary and waste activated sludge: PS and WAS) was evaluated at a range of C:N ratios using a standard biochemical methane potential (BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the C:N ratio of the blends fell in that range. Increasing the IFW content in mix improves the methane potential by increasing both the cumulative biogas production and the rate of methane production. Optimum methane yield 239 mL/g VSremoved occurred at a C:N ratio of 15 which was achieved with a blend containing 11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile solids (VS) destruction was increased and this led to a reduction in methane yield and amount of production. The highest destruction of volatile solids of 93 percent was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is adequate for evaluating optimum admixtures.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2085
Author(s):  
Yang Mo Gu ◽  
Seon Young Park ◽  
Ji Yeon Park ◽  
Byoung-In Sang ◽  
Byoung Seong Jeon ◽  
...  

The impact of attrition ball-mill pretreatment on food waste particle size, soluble chemical oxygen demand (SCOD), biochemical methane potential, and microbial community during anaerobic digestion was investigated based on milling speed and time. The uniformity of particle size improved with increasing milling speed and time. The SCOD of the pretreated samples increased to 4%, 7%, and 17% at the speeds of 150, 225, and 300 rpm, respectively, compared to the control. Milling time did not significantly change the SCOD. The cumulative methane productions of 430, 440, and 490 mL/g-VS were observed at the speeds of 150, 225, and 300 rpm, respectively, while the untreated sample exhibited the cumulative methane production of 390 mL/g-VS. Extended milling time did not improve methane production much. When the milling times of 10, 20, and 30 min were applied with the milling speed fixed at 300 rpm, the methane productions of 490, 510, and 500 mL/g-VS were observed respectively. Ball-mill pretreatment also increased the total volatile fatty acids. During the anaerobic digestion (AD) of ball-mill treated food waste, acetoclastic methanogens predominated, with a relative abundance of 48–49%. Interestingly, hydrogenotrophic methanogens were 1.6 times higher in the pretreated samples than those in the control. These results showed the potential of attrition ball milling as a food waste pretreatment for improving methane production.


Author(s):  
Giovanni Dolci ◽  
Arianna Catenacci ◽  
Francesca Malpei ◽  
Mario Grosso

Abstract Purpose The most abundant among the separately collected waste materials in Italy is food waste. This research aims to evaluate the influence of the type of collection bag on the food waste management chain. In Italy, the food waste collection is mainly based on bioplastic bags. As an alternative, a new type of recycled paper bag shows potential advantages. Methods The two types of collection bag were compared evaluating the weight loss of food waste during the household storage, by means of an experimental assessment simulating the domestic dynamic bag filling. Moreover, the biomethane production of bags under anaerobic conditions was measured at the lab-scale level with Biochemical Methane Potential (BMP) tests. Results During the household storage, the breathable fabric of the paper allows for higher weight losses, ranging on average between + 29 and + 44% compared to bioplastic. BMP tests, carried out under different conditions (temperature, inoculum), showed a 2–14 times higher generation of methane by paper bags compared to bioplastic bags, when referred to 1 kg of inserted food waste. Conclusions Collecting the food waste inside paper bags shows advantages compared to the use of bioplastic bags. First, the waste collection is benefitted thanks to the lower weight of material to be transported to treatment plants, leading also to the possibility of decreasing the collection frequency. Moreover, paper resulted more compatible than bioplastic with the anaerobic digestion treatment, which is currently rapidly increasing as a food waste management option. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document