Power reserve control of solar photovoltaic system for improved frequency response of a stand-alone power system

Author(s):  
Raja Owais ◽  
Sheikh Javed Iqbal
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bukola Babatunde Adetokun ◽  
Joseph Olorunfemi Ojo ◽  
Christopher Maina Muriithi

AbstractThis paper investigates the application of large-scale solar photovoltaic (SPV) system for voltage stability improvement of weak national grids. Large-scale SPV integration has been investigated on the Nigerian power system to enhance voltage stability and as a viable alternative to the aged shunt reactors currently being used in the Nigerian national grid to mitigate overvoltage issues in Northern Nigeria. Two scenarios of increasing SPV penetration level (PL) are investigated in this work, namely, centralized large-scale SPV at the critical bus and dispersed large-scale SPV across the weak buses. The voltage stability of the system is evaluated using the active power margin (APM) also called megawatt margin (MWM) derived from Active Power–Voltage (P–V) analysis, the reactive power margin (RPM) and the associated critical voltage–reactive power ratio (CVQR) index obtained from Reactive Power–Voltage (Q–V) analysis. All simulations are carried out in DIgSILENT PowerFactory software and result analyses done with MATLAB. The results show that with centralized SPV generation for the case study system, the highest bus voltage is able to fall within acceptable limits at 26.29% (1000 MW), while the dispersed SPV achieves this at 21.44% (800 MW). Also, the dispersed SPV scenario provides better voltage stability improvement for the system as indicated by the MWM, RPM and the CVQR index of the system. Therefore, this work provides a baseline insight on the potential application of large-scale SPV in weak grids such as the Nigerian case to address the voltage stability problems in the power system while utilizing the abundant solar resource to meet the increasing energy demand.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050246 ◽  
Author(s):  
B. N. Ch. V. Chakravarthi ◽  
G. V. Siva Krishna Rao

In solar photovoltaic (PV)-based DC microgrid systems, the voltage output of the classical DC–DC converter produces very less voltage as a result of poor voltage gain. Therefore, cascaded DC–DC boost converters are mandatory for boosting the voltage to match the DC microgrid voltage. However, the number of devices utilized in the DC–DC conversion stage becomes higher and leads to more losses. Thereby, it affects the system efficiency and increases the complication of the system and cost. In order to overcome this drawback, a novel double-boost DC–DC converter is proposed to meet the voltage in DC microgrid. Also, this paper discusses the detailed operation of maximum power point (MPP) tracking techniques in the novel double-boost DC–DC converter topology. The fundamental [Formula: see text]–[Formula: see text] and [Formula: see text]–[Formula: see text] characteristics of solar photovoltaic system, operational details of MPP execution and control strategies for double-boost DC/DC converter are described elaborately. The proposed converter operation and power injection into the DC microgrid are verified through the real-time PSCAD simulation and the validation is done through the experiment with hardware module which is indistinguishable with the simulation platform.


Author(s):  
Rahul Bisht ◽  
Afzal Sikander

Purpose This paper aims to achieve accurate maximum power from solar photovoltaic (PV), its five parameters need to be estimated. This study proposes a novel optimization technique for parameter estimation of solar PV. Design/methodology/approach To extract optimal parameters of solar PV new optimization technique based on the Jellyfish search optimizer (JSO). The objective function is defined based on two unknown variables and the proposed technique is used to estimate the two unknown variables and the rest three unknown variables are estimated analytically. Findings In this paper, JSO is used to estimate the parameters of a single diode PV model. In this study, eight different PV panels are considered. In addition, various performance indices, such as PV characteristics, such as power-voltage and current-voltage curves, relative error (RE), root mean square error (RMSE), mean absolute error (MAE) and normalized mean absolute error (NMAE) are determined using the proposed algorithm and existing algorithms. The results for different solar panels have been obtained under varying environmental conditions such as changing temperature and constant irradiance or changing irradiance and constant temperature. Originality/value The proposed technique is new and provides better results with minimum RE, RMSE, NMAE, MAE and converges fast, as depicted by the fitness graph presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document