Structural Assessment of Ancient Masonry Structures: An Experimental Investigation on Rubble Stone Masonry

Author(s):  
Francesca Autiero ◽  
Giuseppina De Martino ◽  
Marco Di Ludovico ◽  
Andrea Prota
2013 ◽  
Vol 29 (4) ◽  
pp. 1159-1181 ◽  
Author(s):  
Qaisar Ali ◽  
Akhtar Naeem Khan ◽  
Mohammad Ashraf ◽  
Awais Ahmed ◽  
Bashir Alam ◽  
...  

Rubble-stone masonry structures are found abundantly in the Asian countries along the Himalayan range. Such structures are usually constructed in dry-stone masonry or are constructed in mud mortar, which makes them susceptible to damage and collapse in earthquakes. In order to study the seismic behavior of these structures, dynamic shake table tests on three reduced-scale rubble-stone masonry models were conducted. The models comprised a representative school building, a residential building, and a model incorporating simple cost-effective features in the form of horizontal and vertical reinforced concrete elements. This paper presents the results of shake table tests carried out on rubble-stone masonry buildings including: damage pattern, capacity curves, damage limit states, and response modification factors of these structures. Test data indicates that seismic performance of rubble-stone masonry structures can be significantly improved by incorporating cost-effective features such as vertical members and relatively thin horizontal bands.


Author(s):  
Mustafa Hrasnica ◽  
Amir Čaušević ◽  
Nerman Rustempašić

Traditional art of building in Bosnia and Herzegovina comprises brick or stone masonry structures. Most historical buildings belonging to national cultural heritage were made of stone-masonry. The country is situated in seismic active region of South-East Europe. In the case of strong earthquake motion such buildings could suffer heavy damages. Some structural elements of historical buildings, as domes and arches, cracked already by moderate earthquake but without the loss of stability. Substantial damages were caused by recent war disaster. Damages could be accumulated through the history as well. Generally, stone-masonry buildings in Bosnia and Herzegovina can be classified in vulnerability classes between A and C according to European Macroseismic Scale. Design and construction procedures for rehabilitation are presented here with examples of repair and strengthening of mosques, which present historical stone masonry structures dating from the Ottoman period in Bosnia and Herzegovina. Traditional and contemporary materials were used for their rehabilitation. It is important to preserve original forms, especially those of damaged elements. The challenge for structural engineers and architects was to find equilibrium between aesthetical and structural demands.


2019 ◽  
pp. 1142-1173
Author(s):  
Mustafa Hrasnica ◽  
Amir Čaušević ◽  
Nerman Rustempašić

Traditional art of building in Bosnia and Herzegovina comprises brick or stone masonry structures. Most historical buildings belonging to national cultural heritage were made of stone-masonry. The country is situated in seismic active region of South-East Europe. In the case of strong earthquake motion such buildings could suffer heavy damages. Some structural elements of historical buildings, as domes and arches, cracked already by moderate earthquake but without the loss of stability. Substantial damages were caused by recent war disaster. Damages could be accumulated through the history as well. Generally, stone-masonry buildings in Bosnia and Herzegovina can be classified in vulnerability classes between A and C according to European Macroseismic Scale. Design and construction procedures for rehabilitation are presented here with examples of repair and strengthening of mosques, which present historical stone masonry structures dating from the Ottoman period in Bosnia and Herzegovina. Traditional and contemporary materials were used for their rehabilitation. It is important to preserve original forms, especially those of damaged elements. The challenge for structural engineers and architects was to find equilibrium between aesthetical and structural demands.


2019 ◽  
Vol 817 ◽  
pp. 552-559
Author(s):  
Francesca Ferretti ◽  
Andrea Incerti ◽  
Anna Rosa Tilocca ◽  
Claudio Mazzotti

During the last decades, several seismic phenomena have shown the high vulnerability of existing stone masonry structures subject to horizontal actions. Innovative composite materials, such as Fiber Reinforced Cementitious Matrix (FRCM), can be adopted for the retrofitting of masonry structures. The use of these innovative FRCM systems is usually combined with a more traditional retrofitting technique: grout injection. It allows to restore or improve the transversal connection between wall leaves, ensuring a monolithic behavior of the structural element. The objective of this research was to analyze the effect of the quality of the grout injection on the shear response of FRCM strengthened stone masonry panels. Results from an experimental campaign, where stone masonry specimens were subject to diagonal compression tests, are therefore presented in this paper. Two samples were subject to grout injection and one of them was strengthened with Steel Reinforced Grout (SRG). Comparisons between the experimental results showed that grout injection alone, if correctly executed, could determine a significant improvement in the shear capacity of masonry panels. The application of the FRCM strengthening system could further enhance the behavior of the samples, especially influencing the failure mode. Comparisons with analytical formulations for the evaluation of the capacity of strengthened walls are also presented.


2010 ◽  
Vol 133-134 ◽  
pp. 647-652 ◽  
Author(s):  
Nicola Mazzon ◽  
Cano M. Chavez ◽  
Maria Rosa Valluzzi ◽  
F. Casarin ◽  
Claudio Modena

The influence of the natural hydraulic lime-based grout on the dynamic behaviour of injected multi-leaf stone masonry elements is discussed in the paper. Shaking table experiments on two stone masonry buildings, tested before and after grout injection, have been performed. The paper focuses on the analysis of both the recorded accelerations and related displacements, at the bottom and at each further storey. This leads to evaluate the stiffness of the unstrengthened and injected structures. The input at increasing PGA allowed the stiffness decay to be studied, simulating a gradual damaging of the structures. These results were also interpreted in the light of both computed frequencies and mode shapes. Finally, the comparison among these results, obtained from all the models, allows to deepen the knowledge concerning the effects induced by the lime-based grout injection and on its capability to modify the dynamic behaviour, when intervening on a damaged (repairing) or on an undamaged (strengthening) structure.


Sign in / Sign up

Export Citation Format

Share Document