Up-regulation of LINC00619 promotes apoptosis and inhibits proliferation, migration and invasion while promoting apoptosis of osteosarcoma cells through inactivation of the HGF-mediated PI3K-Akt signalling pathway

Epigenetics ◽  
2021 ◽  
pp. 1-14
Author(s):  
Xin Zi ◽  
Guoqiang Zhang ◽  
Shichao Qiu
2021 ◽  
Vol 14 (3) ◽  
pp. 260
Author(s):  
Yi-Hsien Hsieh ◽  
Wen-Hung Hsu ◽  
Shun-Fa Yang ◽  
Chung-Jung Liu ◽  
Ko-Hsiu Lu ◽  
...  

Timosaponin AIII (TSAIII) is a steroidal saponin which demonstrates anti-tumour activities. However, the effect of TSAIII on human osteosarcoma cells remains largely unknown. In this study, we demonstrated that TSAIII exerted a significant inhibitory effect on the distribution of cytoskeletal F-actin and cytoskeletal-related proteins, which contributed to the suppression of cell migration and invasion, without inhibiting cell growth or apoptosis. In the synergistic inhibitory analysis, cotreatment of TSAIII with αVβ3 integrin inhibitor [Cyclo(RGDyK)] or focal adhesion kinase (FAK) inhibitor (PF-573228) exerted greater synergistic inhibitory effects on the expression of Intergin αVβ3/FAK/cofilin axis, thus inhibiting the migration and invasion capacities of human osteosarcoma cells. TSAIII was demonstrated to significantly inhibit the pulmonary metastasis formation of human osteosarcoma cells in vivo in metastasis animal models. These findings reveal the inhibitory effects of TSAIII on the metastasis progression of human osteosarcoma cells and the regulation of integrin-αVβ3-FAK-Src and TESK1/p-cofilin mediated cytoskeletal F-actin pathway. Therefore, TSAIII might represent a novel strategy for the auxiliary treatment of human osteosarcoma cells.


2021 ◽  
Author(s):  
Yingfeng Zhang ◽  
Yanhong Gao ◽  
Congcong Sun ◽  
Yanhua Mao ◽  
Benyuan Wu ◽  
...  

Abstract Background: KIAA1456 is effective in the inhibition of tumorigenesis. We previously confirmed that KIAA1456 inhibits cell proliferation and metastasis in epithelial ovarian tumours. In the current study, the specific molecular mechanisms and clinical significance of KIAA1456 underlying the repression of epithelial ovarian cancer were investigated.Methods: Immunohistochemistry was used to evaluate the protein expression of KIAA1456 and SSX1 in epithelial ovarian tumours and normal ovarian tissues. The relationship of KIAA1456 and SSX1 with overall survival of patients with epithelial ovarian cancer was analysed with Kaplan–Meier survival curve and log-rank tests. KIAA1456 was overexpressed and silenced in HO8910PM cells with a lentivirus. The anticancer activity of KIAA1456 was tested by CCK8, plate clone formation assay, flow cytometry, wound healing assay and Transwell invasion assay. Xenograft tumour models were used to investigate the effects of KIAA1456 on tumour growth in vivo. Bioinformatics analyses of microarray profiling indicated that SSX1 and the PI3K/AKT signalling pathway were differentially expressed in KIAA1456-overexpressing and control cells. Therefore, the biological function of HO8910PM cotransfected with KIAA1456- and SSX1-overexpressing cells was detected to validate the rescue effect of SSX1. The downstream factors of PI3K/AKT that are related to cell growth and apoptosis, including p-AKT, PCNA, MMP9, CyclinD1 and Bcl-2, were detected by Western blot analysis.Results: KIAA1456 expression was lower in epithelial ovarian tumours than in normal ovarian tissues. Its expression level negatively correlated with pathological grade. Pearson’s correlation analysis showed that KIAA1456 negatively correlated with SSX1 expression. The overexpression of KIAA1456 in HO8910PM cells inhibited proliferation, migration and invasion and promoted apoptosis. By contrast, the silencing of KIAA1456 resulted in the opposite behaviour. A xenograft tumour experiment showed that KIAA1456 overexpression inhibited tumour growth in vivo. Mechanistically, the overexpression of KIAA1456 inhibited SSX1 expression and AKT phosphorylation in HO8910PM cells, causing the inactivation of the AKT signalling pathway and eventually reducing the expression of PCNA, CyclinD1, MMP9 and Bcl2. Similarly, the silencing of KIAA1456 resulted in the opposite behaviour. Finally, SSX1 overexpression could partially reverse the KIAA1456-induced biological effect.Conclusion: KIAA1456 may serve as a tumour suppressor via the inactivation of SSX1 and the AKT pathway, providing a promising therapeutic target for epithelial ovarian cancers.


2020 ◽  
Vol 19 ◽  
pp. 153303382094321
Author(s):  
Rui Gu ◽  
Xiaodong Li ◽  
Xiaowei Yan ◽  
Zhen Feng ◽  
Aixin Hu

Circular RNAs are a recently discovered subclass of endogenous noncoding RNAs that have been confirmed to play an important role in various pathophysiological processes. However, the underlying function of circular RNAs in osteosarcoma still remains unclear. We aimed to comprehend the function of circ_0032462 in osteosarcoma, as it has been predicted to be highly expressed in osteosarcoma cells. Using real-time polymerase chain reaction, we verified the elevated expression of circ_0032462 in osteosarcoma cells than normal cells. Functional validation experiments revealed that circ_0032462 overexpression promoted proliferation, migration, and invasion in osteosarcoma cells, whereas circ_0032462 silencing was observed to inhibit cancer cell progression (proliferation, migration, and invasion). Furthermore, we found that circ_0032462 upregulated the messenger RNA and protein expression level of kinesin family member 3B. In addition, kinesin family member 3B inhibition was found to inhibit circ_0032462-induced enhanced osteosarcoma cell progression. circ_0032462 overexpression was observed to reverse circ_0032462 silencing-induced inhibitory effect on osteosarcoma cell progression. Overall, our research revealed the function of circ_0032462 in osteosarcoma progression, which might serve as a novel chemotherapeutic target for osteosarcoma.


FEBS Open Bio ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 1291-1301 ◽  
Author(s):  
Hang Lin ◽  
Yi Hao ◽  
Zhengxu Zhao ◽  
Yongjun Tong

Sign in / Sign up

Export Citation Format

Share Document