Maintenance, management, life-cycle design and performance of structures and infrastructures: a brief review

2012 ◽  
Vol 8 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Dan M. Frangopol ◽  
Duygu Saydam ◽  
Sunyong Kim
1995 ◽  
Vol 117 (B) ◽  
pp. 42-47 ◽  
Author(s):  
K. Ishii

Life-cycle engineering seeks to incorporate various product life-cycle values into the early stages of design. These values include functional performance, manufacturability, serviceability, and environmental impact. We start with a survey of life-cycle engineering research focusing on methodologies and tools. Further, the paper addresses critical research issues in life-cycle design tools: design representation and measures for life-cycle evaluation. The paper describes our design representation scheme based on a semantic network that is effective for evaluating the structural layout. Evaluation measures for serviceability and recyclability illustrate the practical use of these representation schemes.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 24-25
Author(s):  
Agbee L Kpogo ◽  
Jismol Jose ◽  
Josiane Panisson ◽  
Bernardo Predicala ◽  
Alvin Alvarado ◽  
...  

Abstract The impact of feeding growing pigs with high wheat millrun diets on the global warming potential (GWP) of pork production was investigated. In study 1, a 2 × 2 factorial arrangement of wheat millrun (0 or 30%) and multi-carbohydrase enzyme (0 or 1 mg kg-1) as main effects was utilized. For each of 16 reps, 6 pigs (60.2±2.2 kg BW) were housed in environmental chambers for 14d. Air samples were collected and analyzed for carbon dioxide (CO2); nitrous oxide (N2O); and methane (CH4). In study 2, data from study 1 and performance data obtained from a previous feeding trial were utilized in a life cycle assessment (LCA) framework that included feed production. The Holos farm model (Agriculture and Agri-Food Canada, Lethbridge. AB) was used to estimate emissions from feed production. In study 1, total manure output from pigs fed 30% wheat millrun diets was 30% greater than pigs on the 0% wheat millrun diets (P < 0.05), however, Feeding diets with 30% millrun did not affect greenhouse gas (GHG) output (CH4, 4.7, 4.9; N2O, 0.45, 0.42; CO2, 1610, 1711; mg s-1 without or with millrun inclusion, respectively; P > 0.78). Enzyme supplementation had no effect on GHG production (CH4, 4.5, 5.1; N2O, 0.46, 0.42; CO2, 1808, 1513; mg s-1 without or with enzymes, respectively; P > 0.51). In study 2, the LCA indicated that the inclusion of 30% wheat millrun in diets for growing pigs resulted in approximately a 25% reduction in GWP when compared to the no wheat millrun diets. Our results demonstrate that 30% wheat millrun did not increase GHG output from the pigs, and thus the inclusion of wheat millrun in diets of growing pigs can reduce the GWP of pork production.


Author(s):  
YASUSHI UMEDA ◽  
AKIRA NONOMURA ◽  
TETSUO TOMIYAMA

Environmental issues require a new manufacturing paradigm because the current mass production and mass consumption paradigm inevitably cause them. We have already proposed a new manufacturing paradigm called the “Post Mass Production Paradigm (PMPP)” that advocates sustainable production by decoupling economic growth from material and energy consumption. To realize PMPP, appropriate planning of a product life cycle (design of life cycle) is indispensable in addition to the traditional environmental conscious design methodologies. For supporting the design of a life cycle, this paper proposes a life-cycle simulation system that consists of a life-cycle simulator, an optimizer, a model editor, and knowledge bases. The simulation system evaluates product life cycles from an integrated view of environmental consciousness and economic profitability and optimizes the life cycles. A case study with the simulation system illustrates that the environmental impacts can be reduced drastically without decreasing corporate profits by appropriately combining maintenance, reuse and recycling, and by taking into consideration that optimized modular structures differ according to life-cycle options.


Author(s):  
Nicholas J. Yannoulakis ◽  
Sanjay B. Joshi ◽  
Richard A. Wysk

Abstract The increasing application of CAE has lead to the evolution of Concurrent Engineering — a philosophy that prescribes simultaneous consideration of the life-cycle design issues of a product. The Concurrent Engineering (CE) systems that have been developed so far have relied on knowledge bases and qualitative evaluations of a part’s manufacturability for feedback to the design engineer. This paper describes a method for developing quantitative indicators of manufacturability. Feature-based design and estimation of machining parameters are used for ascertaining a part’s manufacturing requirements. These requirements are then combined into indices which lead the designer to features that must be redesigned for improved manufacturability. This method is illustrated on a system for rotational machined parts: the Manufacturability Evaluation and Improvement System (MEIS).


Author(s):  
Patrick Di Marco ◽  
Charles F. Eubanks ◽  
Kos Ishii

Abstract This paper describes a method for evaluating the compatibility of a product design with respect to end-of-life product retirement issues, particularly recyclability. Designers can affect the ease of recycling in two major areas: 1) ease of disassembly, and 2) material selection for compatibility with recycling methods. The proposed method, called “clumping,” involves specification of the level of disassembly and the compatibility analysis of each remaining clump with the design’s post-life intent; i.e., reuse, remanufacturing, recycling, or disposal. The method uses qualitative knowledge to assign a normalized measure of compatibility to each clump. An empirical cost function maps the measure to an estimated cost to reprocess the product. The method is an integral part of our life-cycle design computer tool that effectively guides engineers to an environmentally responsible product design. A refrigerator in-door ice dispenser serves as an illustrative example.


Author(s):  
Serena Gagliardi ◽  
Xiong Li ◽  
Matteo Zoppi ◽  
Luis de Leonardo ◽  
Rezia Molfino

Driven by the trend of life-cycle design and sustainable production, an innovative project called self-reconfigurable intelligent swarm fixtures (SwarmItFIX) funded by the European Commission is being developed. The project investigates the application of robotic multi agent fixtures for the support of automotive and airplane body panels during their manufacturing and assembly processes. This paper addresses the exploration and development of the adaptable heads, which are the end-effector of the intelligent fixture. The head is able to adapt to the shape of the workpiece and freeze its shape after adaptation to provide stable support. Two kinds of head designs are discussed. The first design uses the pseudo-phase-change properties of a volume of bulk grains (metal sand) which can be clustered using a hydrostatic pressure to conform to a given workpiece shape. The second design investigated uses phase-change magneto-rheological (MR) fluid in a network of channels to allow and block the motion of a crown of miniature pistons. The initial experiments are carried out and their results show the effectiveness of the design.


Sign in / Sign up

Export Citation Format

Share Document