27 Greenhouse Gas Emissions and a Partial Life Cycle Assessment When Growing Pigs Are Fed High Wheat Millrun Diets

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 24-25
Author(s):  
Agbee L Kpogo ◽  
Jismol Jose ◽  
Josiane Panisson ◽  
Bernardo Predicala ◽  
Alvin Alvarado ◽  
...  

Abstract The impact of feeding growing pigs with high wheat millrun diets on the global warming potential (GWP) of pork production was investigated. In study 1, a 2 × 2 factorial arrangement of wheat millrun (0 or 30%) and multi-carbohydrase enzyme (0 or 1 mg kg-1) as main effects was utilized. For each of 16 reps, 6 pigs (60.2±2.2 kg BW) were housed in environmental chambers for 14d. Air samples were collected and analyzed for carbon dioxide (CO2); nitrous oxide (N2O); and methane (CH4). In study 2, data from study 1 and performance data obtained from a previous feeding trial were utilized in a life cycle assessment (LCA) framework that included feed production. The Holos farm model (Agriculture and Agri-Food Canada, Lethbridge. AB) was used to estimate emissions from feed production. In study 1, total manure output from pigs fed 30% wheat millrun diets was 30% greater than pigs on the 0% wheat millrun diets (P < 0.05), however, Feeding diets with 30% millrun did not affect greenhouse gas (GHG) output (CH4, 4.7, 4.9; N2O, 0.45, 0.42; CO2, 1610, 1711; mg s-1 without or with millrun inclusion, respectively; P > 0.78). Enzyme supplementation had no effect on GHG production (CH4, 4.5, 5.1; N2O, 0.46, 0.42; CO2, 1808, 1513; mg s-1 without or with enzymes, respectively; P > 0.51). In study 2, the LCA indicated that the inclusion of 30% wheat millrun in diets for growing pigs resulted in approximately a 25% reduction in GWP when compared to the no wheat millrun diets. Our results demonstrate that 30% wheat millrun did not increase GHG output from the pigs, and thus the inclusion of wheat millrun in diets of growing pigs can reduce the GWP of pork production.

Author(s):  
Bayu Sukmana ◽  
Isti Surjandari ◽  
Muryanto . ◽  
Arief A. R. Setiawan ◽  
Edi Iswanto Wiloso

Firstly global warming issue caused by greenhouse gas emissions (CO2) which comes from human activities. Along with increasing of daily need, that humans of activities food produce is also increase, include of tofu. Tofu is a traditional Indonesian specialty made from soybeans and used as a side dish. The purpose of this study was to determine the impact of global warming from tofu products on Mampang Prapatan's Small Tofu and Medium Enterprises. The method used in this study is the Life Cycle Assessment (LCA) method with the help of Simapro 8.4 software with a 1 kg tofu functional unit. The data collected in this study is the average data of tofu production for 3 months, namely January - March 2018. The LCA data in this study include the process of soybean cultivation, transportation processes for shipping soybeans, water, fuel wood, and electricity use. The limitations of this study are from cradle (soybean cultivation) to gate (tofu products).The results showed that UKM Mampang Prapatan has the potential impact of global warming with a value of 3.84 kg CO2-eq, while the value of global warming in the production process knows the scenario of wastewater treatment and the use of Liquefied Petroleum Gas (LPG) as fuel for boiling pulp 4.49 kg CO2-eq soybeans. Based on the results of this study, greenhouse gas (CO2) emissions are issued; the intervention that can be done is to optimize the use of raw materials for production to reduce the impact of CO2-eq kg global warming.


2018 ◽  
Vol 58 (6) ◽  
pp. 1027 ◽  
Author(s):  
M. R. Garg ◽  
P. L. Sherasia ◽  
B. T. Phondba ◽  
H. P. S. Makkar

Smallholder dairying in India and other developing countries relies on low- and medium-productive animals, and the feeding is mainly based on crop residues and other agro-industrial by-products. The diets are generally nutritionally imbalanced, resulting in productive and reproductive inefficiencies. This also negatively affects the emission intensity (Ei). For the past 3 years, the National Dairy Development Board of India has been implementing large-scale ration-balancing (RB) program in field animals. The effect of feeding balanced rations on Ei was explored. A cradle to farm-gate life-cycle assessment, taking into account the lifespan milk production, was conducted on 163 540 lactating cows and 163 550 buffaloes in northern, southern, eastern and western India. The life-cycle assessment boundary included feed production, enteric fermentation and manure management during various stages of life. On the basis of economic allocation, emissions of methane (CH4) from enteric fermentation, CH4 from manure management, nitrous oxide from manure management and greenhouse gas (GHG), i.e. carbon dioxide (CO2), CH4 and nitrous oxide from feed production, contributed 69.9%, 6.3%, 9.6% and 14.2% in cows, and 71.6%, 7.4%, 12.6% and 8.4% in buffaloes, respectively, to the baseline (before RB) lifetime total GHG emissions. Average Ei based on economic, mass and digestibility allocation for ‘baseline versus after RB’ were 1.6 versus 1.1, 1.8 versus 1.2 and 1.7 versus 1.2 kg CO2-equivalent/kg fat and protein-corrected milk in cows and 2.3 versus 1.5, 2.5 versus 1.6 and 2.4 versus 1.5 kg CO2-equivalent/kg fat and protein-corrected milk in buffaloes, respectively. Feeding-balanced rations significantly improved milk production, but reduced Ei of milk on lifetime basis by 31.2% and 34.7% in cows and buffaloes, respectively. Implementation of RB program has shown considerable potential to reduce GHG emission intensity under smallholding dairy production system of India.


2013 ◽  
Vol 67 (1) ◽  
pp. 63-73 ◽  
Author(s):  
C. Remy ◽  
B. Lesjean ◽  
J. Waschnewski

This study exemplifies the use of Life Cycle Assessment (LCA) as a tool to quantify the environmental impacts of processes for wastewater treatment. In a case study, the sludge treatment line of a large wastewater treatment plant (WWTP) is analysed in terms of cumulative energy demand and the emission of greenhouse gases (carbon footprint). Sludge treatment consists of anaerobic digestion, dewatering, drying, and disposal of stabilized sludge in mono- or co-incineration in power plants or cement kilns. All relevant forms of energy demand (electricity, heat, chemicals, fossil fuels, transport) and greenhouse gas emissions (fossil CO2, CH4, N2O) are accounted in the assessment, including the treatment of return liquor from dewatering in the WWTP. Results show that the existing process is positive in energy balance (–162 MJ/PECOD * a) and carbon footprint (–11.6 kg CO2-eq/PECOD * a) by supplying secondary products such as electricity from biogas production or mono-incineration and substituting fossil fuels in co-incineration. However, disposal routes for stabilized sludge differ considerably in their energy and greenhouse gas profiles. In total, LCA proves to be a suitable tool to support future investment decisions with information of environmental relevance on the impact of wastewater treatment, but also urban water systems in general.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1194
Author(s):  
Friederike Ziegler ◽  
Katarina Nilsson ◽  
Nette Levermann ◽  
Masaana Dorph ◽  
Bjarne Lyberth ◽  
...  

Achieving a sustainable global food chain is becoming particularly acute as modern Western diets are adopted in a growing number of countries and cultures around the world. Understanding the consequences that this shift has on health and sustainability is important. This exploratory study is the first to apply the life cycle assessment (LCA) methodology to analyze the sustainability implication of ongoing dietary shifts in Greenland, where locally hunted seal meat is increasingly being replaced by imported livestock products, primarily pig and poultry produced in Denmark. This dietary shift, indirectly driven by international trade bans such as the EU seal product ban, has sustainability implications. To inform and support more comprehensive analyses and policy discussions, this paper explores the sustainability of these parallel Greenlandic food supply chains. A quantitative comparison of the greenhouse gas emissions of Greenlandic hunted seal and Danish pig and poultry is complemented by a qualitative discussion of nutrition, cultural food preferences, animal welfare, and the use of land, pesticides and antibiotics. Although the variability in the life cycle inventory data collected from Greenlandic hunters was considerable, greenhouse gas emissions of seal meat were consistently lower than those of imported livestock products. Emissions of the latter are dominated by biogenic emissions from feed production and manure management, while these are absent for seal meat, whose emissions instead are dominated by fossil fuel use. The implications of these results for sustainable national food policies in a modern global context as well as important areas for additional research are discussed.


2016 ◽  
Vol 56 (9) ◽  
pp. 1418 ◽  
Author(s):  
S. G. Wiedemann ◽  
Eugene J. McGahan ◽  
Caoilinn M. Murphy

Agricultural industries are under increasing pressure to measure and reduce greenhouse gas emissions from the supply chain. The Australian pork industry has established proactive goals to improve greenhouse-gas (GHG) performance across the industry, but while productivity indicators are benchmarked by industry, similar data have not previously been collected to determine supply chain GHG emissions. To assess total GHG emissions from Australian pork production, the present study conducted a life-cycle assessment of six case study supply chains and the national herd for the year 2010. The study aimed to determine total GHG emissions and hotspots, and to determine the mitigation potential from alternative manure treatment systems. Two functional units were used: 1 kg of pork liveweight (LW) at the farm gate, and 1 kg of wholesale pork (chilled, bone-in) ready for packaging and distribution. Mean GHG emissions from the case study supply chains ranged from 2.1 to 4.5 kg CO2-e/kg LW (excluding land-use (LU) and direct land use-change (dLUC) emissions). Emissions were lowest from the piggeries that housed grower-finisher pigs on deep litter and highest from pigs housed in conventional systems with uncovered anaerobic effluent ponds. Mean contribution from methane from effluent treatment was 64% of total GHG at the conventional piggeries. Nitrous oxide arose from both grain production and manure management, comprising 7–33% of the total emissions. The GHG emissions for the national herd were 3.6 kg CO2-e/kg LW, with the largest determining factor on total emissions being the relative proportion of pigs managed with high or low emission manure management systems. Emissions from LU and dLUC sources ranged from 0.08 to 0.7 kg CO2-e/kg LW for the case study farms, with differences associated with the inclusion rate of imported soybean meal in the ration and feed-conversion ratio. GHG intensity (excluding LU, dLUC) from the national herd was 6.36 ± 1.03 kg CO2-e/kg wholesale pork, with the emission profile dominated by methane from manure management (50%), followed by feed production (27%) and then meat processing (8%). Inclusion of LU and dLUC emissions had a minor effect on the emission profile. Scenarios testing showed that biogas capture from anaerobic digestion with combined heat and power generation resulted in a 31–64% reduction in GHG emissions. Finishing pigs on deep litter as preferred to conventional housing resulted in 38% lower GHG emissions than conventional finishing.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 873
Author(s):  
Francisco Javier Flor-Montalvo ◽  
Agustín Sánchez-Toledo Ledesma ◽  
Eduardo Martínez Cámara ◽  
Emilio Jiménez-Macías ◽  
Jorge Luis García-Alcaraz ◽  
...  

Natural stoppers are a magnificent closure for the production of aging wines and unique wines, whose application is limited by the availability of raw materials and more specifically of cork sheets of different thickness and quality. The growing demand for quality wine bottle closures leads to the search for alternative stopper production. The two-piece stopper is an alternative since it uses non-usable plates in a conventional way for the production of quality caps. The present study has analyzed the impact of the manufacture of these two-piece stoppers using different methodologies and for different dimensions by developing an LCA (Life Cycle Assessment), concluding that the process phases of the plate, its boiling, and its stabilization, are the phases with the greatest impact. Likewise, it is detected that the impacts in all phases are relatively similar (for one kg of net cork produced), although the volumetric difference between these stoppers represents a significant difference in impacts for each unit produced.


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


Sign in / Sign up

Export Citation Format

Share Document