A Theoretical Explanation of Anomalous Atmospheric Circulation Associated with ENSO Modoki during Boreal Winter

2014 ◽  
Vol 7 (4) ◽  
pp. 352-357 ◽  
Author(s):  
Xing Nan ◽  
Li Jian-Ping ◽  
Li Yao-Kun
2021 ◽  
Author(s):  
Bin Yu ◽  
Xuebin Zhang ◽  
Guilong Li ◽  
Wei Yu

Abstract A recent study of future changes in global wind power using an ensemble of ten CMIP5 climate simulations indicated an interhemispheric asymmetry of wind power changes over the 21st century, featured by power decreases across the Northern Hemisphere mid-latitudes and increases across the tropics and subtropics of the Southern Hemisphere. Here we analyze future global projections of surface mean and extreme winds by means of a single-model initial-condition 50-member ensemble of climate simulations generated with CanESM5, the Canadian model participated in CMIP6. We analyze the ensemble mean and spread of boreal winter mean and extreme wind trends over the next half-century (2021-2070) and explore the contribution of internal climate variability to these trends. Surface wind speed is projected to mostly decrease in northern mid-low latitudes and southern mid-latitudes and increase in northern high latitudes and southern tropical and subtropical regions, with considerable regional variations. Large ensemble spreads are apparent, especially with remarkable differences over northern parts of South America and northern Russia. The interhemispheric asymmetry of wind projections is found in most ensemble members, and can be related to large-scale changes in surface temperature and atmospheric circulation. The extreme wind has similar structure of future projections, whereas its reductions tend to be more consistent over northern mid-latitudes. The projected mean and extreme wind changes are attributed to changes in both externally anthropogenic forced and internal climate variability generated components. The spread in wind projections is partially due to large-scale atmospheric circulation variability.


2021 ◽  
Author(s):  
Natasha Senior ◽  
Adrian Matthews ◽  
Manoj Joshi

<p>The global hydrological cycle is expected to intensify under a warming climate. Since extratropical Rossby wave trains are triggered by tropical convection, this will impact the atmospheric circulation in the extratropics. Owing to the approximate linearity of the teleconnection pattern, we can use a method based in linear response theory to quantify this extratropical response using a step response function. We have examined the step response functions for a selection of CMIP5 pre-industrial control runs and reanalysis data,  in particular studying the response during the boreal winter. We found there to a large intermodel spread in the response pattern owing to differences in representations of the model basic state. In the current work, we use a 'perfect model' approach to conduct a systematic study of the performance of the linear response method in projecting future winter-time northern hemisphere circulation changes using the present day (1986-2005) model basic states, comparing these to those projected by CMIP5 models under a 3 degree rise in mean global temperature anomaly above pre-industrial. We demonstrate how, given a projected precipitation change pattern, the linear response theory method can compete with the models in providing faithful projections for the extratropical circulation changes.</p>


Sign in / Sign up

Export Citation Format

Share Document