Effect of surface roughness on vortex-induced vibration response of a circular cylinder

2017 ◽  
Vol 13 (1) ◽  
pp. 28-42 ◽  
Author(s):  
Yun Gao ◽  
Zhi Zong ◽  
Li Zou ◽  
Zongyu Jiang
Author(s):  
M. Eaddy ◽  
W. H. Melbourne ◽  
J. Sheridan

The problem of flow-induced vibration has been studied extensively. However, much of this research has focused on the smooth cylinder to gain an understanding of the mechanisms that cause vortex-induced vibration. In this paper results of an investigation of the effect of surface roughness on the cross-wind forces are presented. Measurements of the sectional RMS fluctuating lift forces and the axial correlation of the pressures for Reynolds numbers from 1 × 105 to 1.4 × 106 are given. It was found that surface roughness significantly increased the axial correlation of the pressures to similar values found at high subcritical Reynolds numbers. There was little effect of the surface roughness on the sectional lift forces. The improved correlation of the vortex shedding means rough cylinders will be subject to larger cross-wind forces and an increased possibility of vortex-induced vibration compared to smooth cylinders.


Author(s):  
Michael M. Bernitsas ◽  
Kamaldev Raghavan

Vortex Induced Vibration (VIV) of a circular cylinder in a steady flow is reduced using distributed surface roughness. VIV reduction is needed in numerous applications where VIV is destructive. Roughness is distributed to the surface of the cylinder in the form of sandpaper strips to achieve three goals: (1) Trip separation in a controlled manner so that some uncertainties are removed and the flow becomes more predictable. (2) Reduce spanwise correlation, which is strongly linked to VIV. (3) Select roughness grit size to achieve the first goal without energizing too much the boundary layer, which would induce higher vorticity and circulation, and consequently lift. Our experiments show that it is possible to reduce VIV amplitude and synchronization range. More tests are needed to achieve full suppression. Our experiments are conducted in the TrSL2 and TrSL3 flow regimes.


Sign in / Sign up

Export Citation Format

Share Document