Heat transfer in generalized Carreau fluid flow near a radioactive heated rotating disk

Author(s):  
Mair Khan ◽  
T. Salahuddin ◽  
Rifaqat Ali ◽  
Qaisar Khan
2010 ◽  
Vol 132 (11) ◽  
Author(s):  
A. Arikoglu ◽  
G. Komurgoz ◽  
I. Ozkol ◽  
A. Y. Gunes

The present work examines the effects of temperature and velocity jump conditions on heat transfer, fluid flow, and entropy generation. As the physical model, the axially symmetrical steady flow of a Newtonian ambient fluid over a single rotating disk is chosen. The related nonlinear governing equations for flow and thermal fields are reduced to ordinary differential equations by applying so-called classical approach, which was first introduced by von Karman. Instead of a numerical method, a recently developed popular semi numerical-analytical technique; differential transform method is employed to solve the reduced governing equations under the assumptions of velocity and thermal jump conditions on the disk surface. The combined effects of the velocity slip and temperature jump on the thermal and flow fields are investigated in great detail for different values of the nondimensional field parameters. In order to evaluate the efficiency of such rotating fluidic system, the entropy generation equation is derived and nondimensionalized. Additionally, special attention has been given to entropy generation, its characteristic and dependency on various parameters, i.e., group parameter, Kn and Re numbers, etc. It is observed that thermal and velocity jump strongly reduce the magnitude of entropy generation throughout the flow domain. As a result, the efficiency of the related physical system increases. A noticeable objective of this study is to give an open form solution of nonlinear field equations. The reduced recurative form of the governing equations presented gives the reader an opportunity to see the solution in open series form.


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0192138 ◽  
Author(s):  
Mohammad Yaghoub Abdollahzadeh Jamalabadi ◽  
Mohammadreza Daqiqshirazi ◽  
Hossein Nasiri ◽  
Mohammad Reza Safaei ◽  
Truong Khang Nguyen

Author(s):  
A. D. Gosman ◽  
M. L. Koosinlin ◽  
F. C. Lockwood ◽  
D. B. Spalding

A calculation procedure has been developed for predicting fluid-flow and heat-transfer phenomena in axisymmetrical, rotating, turbulent, steady flows, with special reference to those mainly confined within cavities. The procedure has been used for predicting boundary-layer flow between a rotating disk and a stationary one, and flow and heat transfer in a shrouded-disk system. Agreement with experimental measurements is satisfactory.


2019 ◽  
Vol 29 (3) ◽  
pp. 94
Author(s):  
Tamara Sh. Ahmed

During this article, we have a tendency to show the peristaltic activity of magnetohydrodynamics flow of carreau fluid with heat transfer influence in an inclined tapered asymmetric channel through porous medium by exploitation the influence of non-slip boundary conditions. The tapered asymmetric channel is often created because of the intrauterine fluid flow induced by myometrial contraction and it had been simulated by asymmetric peristaltic fluid flow in an exceedingly two dimensional infinite non uniform channel, this fluid is known as hereby carreau fluid, conjointly we are able to say that one amongst carreau's applications is that the blood flow within the body of human. Industrial field, silicon oil is an example of carreau fluid. By exploitation, the perturbation technique for little values of weissenberg number, the nonlinear governing equations in the two-dimensional Cartesian coordinate system is resolved under the assumptions of long wavelength and low Reynolds number. The expressions of stream function, temperature distribution, the coefficient of heat transfer, frictional forces at the walls of the channel, pressure gradient are calculated. The effectiveness of interesting parameters on the inflow has been colluded and studied.


2019 ◽  
Vol 29 (8) ◽  
pp. 2977-2992 ◽  
Author(s):  
Muhammad Ijaz Khan ◽  
Sumaira Qayyum ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Purpose The purpose of this paper is to analyze the Sutterby fluid flow by a rotating disk with homogeneous-heterogeneous reactions. Inspection of heat transfer is through Cattaneo–Christov model. Stratification effect is also considered. Design/methodology/approach Nonlinear equations are solved by the homotopy technique. Findings Sutterby fluid flow by rotating disk is not considered yet. Here the authors intend to analyze it with Cattaneo–Christov heat flux and homogeneous-heterogeneous reactions. Thermal stratification is also taken into consideration. Originality/value No such work is yet done in the literature.


Sign in / Sign up

Export Citation Format

Share Document