scholarly journals Outlining the influence of thermal and solutal stratifications on mixed convection second grade fluid flow near an irregular cylinder with induced magnetic field

Author(s):  
T. Salahuddin ◽  
Nazim Siddique ◽  
Mair Khan ◽  
Basem Al Alwan ◽  
Mohammed Almesfer
Heat Transfer ◽  
2020 ◽  
Vol 49 (6) ◽  
pp. 3958-3978
Author(s):  
Manzoor Ahmad ◽  
S. A. Shehzad ◽  
Muhammad Taj ◽  
G. K. Ramesh

2019 ◽  
Vol 29 (8) ◽  
pp. 2948-2963 ◽  
Author(s):  
Muhammad Waqas ◽  
Muhammad Mudassar Gulzar ◽  
Zeeshan Asghar ◽  
Z. Ali ◽  
Waqar Azeem Khan ◽  
...  

Purpose The purpose of this study is to elaborate mixed convection impact in stratified nanofluid flow by convectively heated moving surface. Rheological relations of second-grade fluid are used for formulation. Magnetic field, heat absorption/generation and convective conditions are considered for modeling. Design/methodology/approach Convergent solutions are achieved using homotopy procedure. Findings The authors found opposing behavior for radiation and thermal stratification variables against thermal field. Originality/value No such analysis has yet been reported.


2013 ◽  
Vol 44 (8) ◽  
pp. 687-702 ◽  
Author(s):  
Tasawar Hayat ◽  
Sabir A. Shehzad ◽  
Muhammad Qasim ◽  
F. Alsaadi ◽  
Ahmed Alsaedi

Author(s):  
D. Dey ◽  
R. Borah

Stability on dual solutions of second-grade fluid flow over a stretching surface with simultaneous thermal and mass diffusions has been studied. The fluid flow is governed by Lorentz force and energy dissipation due to viscosity. Lorentz force is generated due to the application of magnetic field along the transverse direction. In methodology, suitable similarity transformation and MATLAB built-in bvp4c solver technique have been adopted. Effects of some flow parameters are exhibited through figures and tables and a special emphasis is given on the existence of dual solutions. A stability analysis is executed to determine the stable and physically achievable solutions. For the laminar flow, the drag force on the surface for the time-independent case is reduced due to amplifying values of But, it enhances the drag force for the time-dependent case. This shows the effectiveness of the first solution (during steady case) over the unsteady case.


Author(s):  
Nadeem Abbas ◽  
M. Y. Malik ◽  
Sohail Nadeem ◽  
Shafiq Hussain ◽  
A. S. El-Shafa

Stagnation point flow of viscoelastic second grade fluid over a stretching cylinder under the thermal slip and magnetic hydrodynamics effects are studied. The mathematical model has been developed under the assumption of non-Newtonian viscoelastic fluid flow over a stretching cylinder by means of the boundary layer approximations. The developed model further reduced through the similarity transformations and constructs the model of nonlinear ordinary differential equations. The system of nonlinear differential equations is dimensionless and solved through the numerical technique bvp5c methods. The results of the physical parameters are found and interpreted in the form of tables and graphs. The velocity shows that the graph of curves enhances away from the surface when the values material parameter [Formula: see text] increase, which means the momentum boundary layer increases for enhancing the material parameter [Formula: see text]. The temperature gradient reduced due enhancing the values of material parameter [Formula: see text] because thermal boundary layer reduced for higher values of material parameter [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document