scholarly journals A method to selectively internalise submicrometer boron carbide particles into cancer cells using surface transferrin conjugation for developing a new boron neutron capture therapy agent

2019 ◽  
Vol 15 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Takuma Tsuji ◽  
Hiroshi Yoshitomi ◽  
Yoshie Ishikawa ◽  
Naoto Koshizaki ◽  
Motoshi Suzuki ◽  
...  
Author(s):  
Yan Surono ◽  
C Cari ◽  
Yohannes Sarjono

<p><strong>Abstract</strong> Cancer is a deadly disease that exist on planet earth. Efforts were made to be able to kill cancer cells either by manual operation or by radiotherapy. One way to use energy radiation radioactive elements as killers of cancer cells is Boron Neutron Capture Therapy (BNCT). BNCT is a therapeutic technique that utilizes the interaction of neutron capture by the core 10B will produce α-particles and nuclei 7Li results by reaction 10B (n, α) 7Li. It therefore requires a material that will produce neutrons used in BNCT. Materials  target that will be searched in order to obtain optimal materials according to the requirements provided by the International Atomic Agency (IAEA).<em></em></p><p><em> </em></p><p><strong>Keywords </strong>: Kanker, Material, Neutron, BNCT</p><p align="center"><strong><em> </em></strong></p><p><strong>Abstrak</strong> Kanker adalah salah satu penyakit yang mematikan yang ada di planet bumi. Upaya upaya dilakukan untuk dapat membunuh sel kanker baik itu  secara operasi manual maupun dengan cara radioterapi. Salah satu cara yang memanfaatkan energi radiasi unsur unsur radioaktif sebagai pembunuh sel kanker adalah Boron Neutron Capture Therapy (BNCT). BNCT merupakan teknik terapi yang memanfaatkan interaksi tangkapan neutron oleh inti 10B yang akan menghasilkan partikel-α dan inti hasil 7Li melalui reaksi 10B(n,α) 7Li. Oleh sebab itu diperlukan material yang akan menghasilkan neutron digunakan dalam BNCT. Bahan - bahan sasaran yang akan ditelusur dalam upaya mendapatkan bahan yang optimal sesuai persyaratan yang diberikan oleh International Atomic Agency (IAEA).</p><p><em> </em></p><p><strong>Kata Kunci </strong>: Kanker, Material, Neutron, BNCT</p>


Oncotarget ◽  
2017 ◽  
Vol 8 (22) ◽  
pp. 36614-36627 ◽  
Author(s):  
Weirong Kang ◽  
Darren Svirskis ◽  
Vijayalekshmi Sarojini ◽  
Ailsa L. McGregor ◽  
Joseph Bevitt ◽  
...  

2019 ◽  
Vol 37 (6) ◽  
pp. 1292-1299
Author(s):  
Adam Hermawan ◽  
Ratna Asmah Susidarti ◽  
Ratna Dwi Ramadani ◽  
Lailatul Qodria ◽  
Rohmad Yudi Utomo ◽  
...  

2018 ◽  
Vol 35 (3) ◽  
pp. 203-207
Author(s):  
Ren-Tai Chiang

 The direct and indirect ionizing radiation sources for boron neutron capture therapy (BNCT)are identi?ed. The mechanisms of physical, chemical and biological radiation interactions for BNCT are systematically described and analyzed. The relationship between the effect of biological radiation and radiation dose are illustrated and analyzed for BNCT. If the DNAs in chromosomes are damaged by ion- izing radiations, the instructions that control the cell function and reproduction are also damaged. This radiation damage may be reparable, irreparable, or incorrectly repaired. The irreparable damage can result in cell death at next mitosis while incorrectly repaired damage can result in mutation. Cell death leads to variable degrees of tissue dysfunction, which can affect the whole organism’s functions. Can- cer cells cannot live without oxygen and nutrients via the blood supply. A cancer tumor can be shrunk by damaging angiogenic factors and/or capillaries via ionizing radiations to decrease blood supply into the cancer tumor. The collisions between ionizing radiations and the target nuclei and the absorption of the ultraviolet, visible light, infrared and microwaves from bremsstrahlung in the tumor can heat up and damage cancer cells and function as thermotherapy. The cancer cells are more chemically and biologically sensitive at the BNCT-induced higher temperatures since free-radical-induced chemical re- actions are more random and vigorous at higher temperatures after irradiation, and consequently the cancer cells are harder to divide or even survive due to more cell DNA damage. BNCT is demonstrated via a recent clinical trial that it is quite effective in treating recurrent nasopharyngeal cancer.


2006 ◽  
Vol 17 (2) ◽  
pp. 284-290 ◽  
Author(s):  
M. W. Mortensen ◽  
O. Björkdahl ◽  
P. G. Sørensen ◽  
T. Hansen ◽  
M. R. Jensen ◽  
...  

2002 ◽  
Vol 67 (6) ◽  
pp. 836-842 ◽  
Author(s):  
George W. Kabalka ◽  
Bhaskar C. Das ◽  
Sasmita Das ◽  
Guishing Li ◽  
Rajiv Srivastava ◽  
...  

1-Amino-3-{2-[7-(6-deoxy-α/β-D-galactopyranos-6-yl)-1,7-dicarba-closo-dodecaboran(12)-1-yl]ethyl}cyclobutanecarboxylic acid was synthesized as a potential new agent for boron neutron capture therapy. The key step in the synthesis is the alkylation of 3-{2-[1,7-dicarba-closo-dodecaboran(12)-1-yl]ethyl}cyclobutanone ethylene monothioketal with 1,2:3,4-di-O-isopropylidene-6-O-triflyl-α-D-galactopyranose which gave the precursor ketone that was then converted to the title amino acid via a Bücherer-Strecker synthesis followed by removal of isopropylidene groups in HCl. Preliminary toxicity data in A 435 cancer cells were obtained.


Sign in / Sign up

Export Citation Format

Share Document