Novel screening approaches for human prion diseases drug discovery

2019 ◽  
Vol 14 (10) ◽  
pp. 983-993
Author(s):  
Fabio Moda ◽  
Maria Laura Bolognesi ◽  
Giuseppe Legname
2010 ◽  
Vol 2 (9) ◽  
pp. 1429-1440 ◽  
Author(s):  
Rebecca M Pruss ◽  
Marc Giraudon-Paoli ◽  
Svetlana Morozova ◽  
Patrick Berna ◽  
Jean-Louis Abitbol ◽  
...  

2019 ◽  
Author(s):  
Chen Farhy ◽  
Luis Orozco ◽  
Fu-Yue Zeng ◽  
Ian Pass ◽  
Jarkko Ylanko ◽  
...  

AbstractWith the advent of automatic cell imaging and machine learning, high-content phenotypic screening has become the approach of choice for drug discovery due to its ability to extract drug specific multilayered data and compare it to known profiles. In the field of epigenetics such screening approaches has suffered from the lack of tools sensitive to selective epigenetic perturbations. Here we describe a novel approach Microscopic Imaging of Epigenetic Landscapes (MIEL) that captures patterns of nuclear staining of epigenetic marks (e.g. acetylated and methylated histones) and employs machine learning to accurately distinguish between such patterns (1). We demonstrated that MIEL has superior resolution compared to conventional intensity thresholding techniques and enables efficient detection of epigenetically active compounds, function-based classification, flagging possible off-target effects and even predict novel drug function. We validated MIEL platform across multiple cells lines and using dose-response curves to insure the robustness of this approach for the high content high throughput drug discovery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bonnie G. Su ◽  
Matthew J. Henley

Transcription factors (TFs) are one of the most promising but underutilized classes of drug targets. The high degree of intrinsic disorder in both the structure and the interactions (i.e., “fuzziness”) of TFs is one of the most important challenges to be addressed in this context. Here, we discuss the impacts of fuzziness on transcription factor drug discovery, describing how disorder poses fundamental problems to the typical drug design, and screening approaches used for other classes of proteins such as receptors or enzymes. We then speculate on ways modern biophysical and chemical biology approaches could synergize to overcome many of these challenges by directly addressing the challenges imposed by TF disorder and fuzziness.


Parasitology ◽  
2013 ◽  
Vol 141 (1) ◽  
pp. 17-27 ◽  
Author(s):  
FRASER CUNNINGHAM ◽  
MARTIN J. McPHILLIE ◽  
A. PETER JOHNSON ◽  
COLIN W. G. FISHWICK

SUMMARYIn light of the low success rate of target-based genomics and HTS (High Throughput Screening) approaches in anti-infective drug discovery, in silico structure-based drug design (SBDD) is becoming increasingly prominent at the forefront of drug discovery. In silico SBDD can be used to identify novel enzyme inhibitors rapidly, where the strength of this approach lies with its ability to model and predict the outcome of protein-ligand binding. Over the past 10 years, our group have applied this approach to a diverse number of anti-infective drug targets ranging from bacterial D-ala-D-ala ligase to Plasmodium falciparum DHODH. Our search for new inhibitors has produced lead compounds with both enzyme and whole-cell activity with established on-target mode of action. This has been achieved with greater speed and efficiency compared with the more traditional HTS initiatives and at significantly reduced cost and manpower.


2017 ◽  
Vol 17 (9) ◽  
pp. 1096-1114 ◽  
Author(s):  
Azizeh Abdolmaleki ◽  
Jahan B. Ghasemi

Finding high quality beginning compounds is a critical job at the start of the lead generation stage for multi-target drug discovery (MTDD). Designing hybrid compounds as selective multitarget chemical entity is a challenge, opportunity, and new idea to better act against specific multiple targets. One hybrid molecule is formed by two (or more) pharmacophore group’s participation. So, these new compounds often exhibit two or more activities going about as multi-target drugs (mtdrugs) and may have superior safety or efficacy. Application of integrating a range of information and sophisticated new in silico, bioinformatics, structural biology, pharmacogenomics methods may be useful to discover/design, and synthesis of the new hybrid molecules. In this regard, many rational and screening approaches have followed by medicinal chemists for the lead generation in MTDD. Here, we review some popular lead generation approaches that have been used for designing multiple ligands (DMLs). This paper focuses on dual- acting chemical entities that incorporate a part of two drugs or bioactive compounds to compose hybrid molecules. Also, it presents some of key concepts and limitations/strengths of lead generation methods by comparing combination framework method with screening approaches. Besides, a number of examples to represent applications of hybrid molecules in the drug discovery are included.


2019 ◽  
Vol 4 (3) ◽  
pp. 108 ◽  
Author(s):  
Malina A. Bakowski ◽  
Case W. McNamara

The intracellular bacteria now known as Wolbachia were first described in filarial worms in the 1970s, but the idea of Wolbachia being used as a macrofilaricidal target did not gain wide attention until the early 2000s, with research in filariae suggesting the requirement of worms for the endosymbiont. This new-found interest prompted the eventual organization of the Anti-Wolbachia Consortium (A-WOL) at the Liverpool School of Tropical Medicine, who, among others have been active in the field of antiwolbachial drug discovery to treat filarial infections. Clinical proof of concept studies using doxycycline demonstrated the utility of the antiwolbachial therapy, but efficacious treatments were of long duration and not safe for all infected. With the advance of robotics, automation, and high-speed computing, the search for superior antiwolbachials shifted away from smaller studies with a select number of antibiotics to high-throughput screening approaches, centered largely around cell-based phenotypic screens due to the rather limited knowledge about, and tools available to manipulate, this bacterium. A concomitant effort was put towards developing validation approaches and in vivo models supporting drug discovery efforts. In this review, we summarize the strategies behind and outcomes of recent large phenotypic screens published within the last 5 years, hit compound validation approaches and promising candidates with profiles superior to doxycycline, including ones positioned to advance into clinical trials for treatment of filarial worm infections.


Sign in / Sign up

Export Citation Format

Share Document