Mental representation of fractions: It all depends on whether they are common or uncommon

2018 ◽  
Vol 71 (9) ◽  
pp. 1873-1886 ◽  
Author(s):  
Fuchang Liu

This study examined whether common and uncommon fractions are mentally represented differently and whether common ones are used in accessing the magnitudes of uncommon ones. In Experiments 1 and 2, college education majors, most of whom were female, Caucasian, and in their early 20s, made comparisons involving common and uncommon fractions. In Experiment 3, participants were presented with comparison tasks involving uncommon fractions and asked to describe the strategies which they used in making such comparisons. Analysis of reaction times and error rates support the hypothesis that for common fractions, it is their holistic real value, rather than their individual components, that gets represented. For uncommon fractions, the access of their magnitudes is a process of retrieving and using a known common one having a similar value. Such results suggest that the development of the cognisance of the magnitudes of fractions may be principally a matter of common ones only and that learners’ handling of uncommon fractions may be greatly facilitated through instructions on matching them with common ones having a similar value.

Author(s):  
David A. Atchison ◽  
Carol A. Pedersen ◽  
Stephen J. Dain ◽  
Joanne M. Wood

We investigated the effect of color-vision deficiency on reaction times and accuracy of identification of traffic light signals. Participants were 20 color-normal and 49 color-deficient males, the latter divided into subgroups of different severity and type. Participants performed a tracking task. At random intervals, stimuli simulating standard traffic light signals were presented against a white background at 5° to right or left. Participants identified stimulus color (red/yellow/green) by pressing an appropriate response button. Mean response times for color normals were 525, 410, and 450 ms for red, yellow, and green lights, respectively. For color deficients, response times to red lights increased with increase in severity of color deficiency, with deutans performing worse than protans of similar severity: response times of deuteranopes and protanopes were 53% and 35% longer than those of color normals. A similar pattern occurred for yellow lights, with deuteranopes and protanopes having increased response times of 85% and 53%, respectively. For green lights, response times of all groups were similar. Error rates showed patterns similar to those of response times. Contrary to previous studies, deutans performed much worse than protans of similar severity. Actual or potential applications of this research include traffic signal design and driver licensing.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2184 ◽  
Author(s):  
Jim Lumsden ◽  
Andy Skinner ◽  
Andy T. Woods ◽  
Natalia S. Lawrence ◽  
Marcus Munafò

Computerised cognitive assessments are a vital tool in the behavioural sciences, but participants often view them as effortful and unengaging. One potential solution is to add gamelike elements to these tasks in order to make them more intrinsically enjoyable, and some researchers have posited that a more engaging task might produce higher quality data. This assumption, however, remains largely untested. We investigated the effects of gamelike features and test location on the data and enjoyment ratings from a simple cognitive task. We tested three gamified variants of the Go-No-Go task, delivered both in the laboratory and online. In the first version of the task participants were rewarded with points for performing optimally. The second version of the task was framed as a cowboy shootout. The third version was a standard Go-No-Go task, used as a control condition. We compared reaction time, accuracy and subjective measures of enjoyment and engagement between task variants and study location. We found points to be a highly suitable game mechanic for gamified cognitive testing because they did not disrupt the validity of the data collected but increased participant enjoyment. However, we found no evidence that gamelike features could increase engagement to the point where participant performance improved. We also found that while participants enjoyed the cowboy themed task, the difficulty of categorising the gamelike stimuli adversely affected participant performance, increasing No-Go error rates by 28% compared to the non-game control. Responses collected online vs. in the laboratory had slightly longer reaction times but were otherwise very similar, supporting other findings that online crowdsourcing is an acceptable method of data collection for this type of research.


2020 ◽  
Author(s):  
Jeff Miller

Contrary to the warning of Miller (1988), Rousselet and Wilcox (2020) argued that it is better to summarize each participant’s single-trial reaction times (RTs) in a given condition with the median than with the mean when comparing the central tendencies of RT distributions across experimental conditions. They acknowledged that median RTs can produce inflated Type I error rates when conditions differ in the number of trials tested, consistent with Miller’s warning, but they showed that the bias responsible for this error rate inflation could be eliminated with a bootstrap bias correction technique. The present simulations extend their analysis by examining the power of bias-corrected medians to detect true experimental effects and by comparing this power with the power of analyses using means and regular medians. Unfortunately, although bias-corrected medians solve the problem of inflated Type I error rates, their power is lower than that of means or regular medians in many realistic situations. In addition, even when conditions do not differ in the number of trials tested, the power of tests (e.g., t-tests) is generally lower using medians rather than means as the summary measures. Thus, the present simulations demonstrate that summary means will often provide the most powerful test for differences between conditions, and they show what aspects of the RT distributions determine the size of the power advantage for means.


2020 ◽  
Vol 10 (7) ◽  
pp. 419
Author(s):  
Jari K. Gool ◽  
Ysbrand D. van der Werf ◽  
Gert Jan Lammers ◽  
Rolf Fronczek

Vigilance complaints often occur in people with narcolepsy type 1 and severely impair effective daytime functioning. We tested the feasibility of a three-level sustained attention to response task (SART) paradigm within a magnetic resonance imaging (MRI) environment to understand brain architecture underlying vigilance regulation in individuals with narcolepsy type 1. Twelve medication-free people with narcolepsy type 1 and 11 matched controls were included. The SART included four repetitions of a baseline block and two difficulty levels requiring moderate and high vigilance. Outcome measures were between and within-group performance indices on error rates and reaction times, and functional MRI (fMRI) parameters: mean activity during the task and between-group activity differences across the three conditions and related to changes in activation over time (time-on-task) and error-related activity. Patients—but not controls—made significantly more mistakes with increasing difficulty. The modified SART is a feasible MRI vigilance task showing similar task-positive brain activity in both groups within the cingulo-opercular, frontoparietal, arousal, motor, and visual networks. During blocks of higher vigilance demand, patients had significantly lower activation in these regions than controls. Patients had lower error-related activity in the left pre- and postcentral gyrus. The time-on-task activity differences between groups suggest that those with narcolepsy are insufficiently capable of activating attention- and arousal-related regions when transitioning from attention initiation to stable attention, specifically when vigilance demand is high. They also show lower inhibitory motor activity in relation to errors, suggesting impaired executive functioning.


2018 ◽  
Vol 120 (1) ◽  
pp. 115-128 ◽  
Author(s):  
Benjamin Fischer ◽  
Detlef Wegener

Nonhuman primates constitute an indispensable model system for studying higher brain functions at the neurophysiological level. Studies involving these animals elucidated the neuronal mechanisms of various cognitive and executive functions, such as visual attention, working memory, and decision-making. Positive reinforcement training (PRT) constitutes the gold standard for training animals on the cognitive tasks employed in these studies. In the laboratory, PRT is usually based on application of a liquid reward as the reinforcer to strengthen the desired behavior and absence of the reward if the animal’s response is wrong. By trial and error, the monkey may adapt its behavior and successfully reduce the number of error trials, and eventually learn even very sophisticated tasks. However, progress and success of the training strongly depend on reasonable error rates. If errors get too frequent, they may cause a drop in the animal’s motivation to cooperate or its adaptation to high error rates and poor overall performance. We introduce in this report an alternative training regime to minimize errors and base the critical information for learning on graded rewarding. For every new task rule, the feedback to the animal is provided by different amounts of reward to distinguish the desired, optimal behavior from less optimal behavior. We applied this regime in different situations during training of visual attention tasks and analyzed behavioral performance and reaction times to evaluate its effectiveness. For both simple and complex behaviors, graded rewarding was found to constitute a powerful technique allowing for effective training without trade-off in accessible task difficulty or task performance. NEW & NOTEWORTHY Laboratory training of monkeys usually builds on providing a fixed amount of reward for the desired behavior, and no reward otherwise. We present a nonbinary, graded reward schedule to emphasize the positive, desired behavior and to keep errors on a moderate level. Using data from typical training situations, we demonstrate that graded rewards help to effectively guide the animal by success rather than errors and provide a powerful new tool for positive reinforcement training.


2014 ◽  
Vol 112 (8) ◽  
pp. 1849-1856 ◽  
Author(s):  
Daniel E. Acuna ◽  
Nicholas F. Wymbs ◽  
Chelsea A. Reynolds ◽  
Nathalie Picard ◽  
Robert S. Turner ◽  
...  

Sequence production tasks are a standard tool to analyze motor learning, consolidation, and habituation. As sequences are learned, movements are typically grouped into subsets or chunks. For example, most Americans memorize telephone numbers in two chunks of three digits, and one chunk of four. Studies generally use response times or error rates to estimate how subjects chunk, and these estimates are often related to physiological data. Here we show that chunking is simultaneously reflected in reaction times, errors, and their correlations. This multimodal structure enables us to propose a Bayesian algorithm that better estimates chunks while avoiding overfitting. Our algorithm reveals previously unknown behavioral structure, such as an increased error correlations with training, and promises a useful tool for the characterization of many forms of sequential motor behavior.


1994 ◽  
Vol 6 (3) ◽  
pp. 204-219 ◽  
Author(s):  
Peter Praamstra ◽  
Antje S. Meyer ◽  
Willem J. M. Levelt

Two experiments examined phonological priming effects on reaction times, error rates, and event-related brain potential (ERP) measures in an auditory lexical decision task. In Experiment 1 related prime-target pairs rhymed, and in Experiment 2 they alliterated (i.e., shared the consonantal onset and vowel). Event-related potentials were recorded in a delayed response task. Reaction times and error rates were obtained both for the delayed and an immediate response task. The behavioral data of Experiment 1 provided evidence for phonological facilitation of word, but not of nonword decisions. The brain potentials were more negative to unrelated than to rhyming word-word pairs between 450 and 700 rnsec after target onset. This negative enhancement was not present for word-nonword pairs. Thus, the ERP results match the behavioral data. The behavioral data of Experiment 2 provided no evidence for phonological Facilitation. However, between 250 and 450 msec after target onset, i.e., considerably earlier than in Experiment 1, brain potentials were more negative for unrelated than for alliterating Word-word and word-nonword pairs. It is argued that the ERP effects in the two experiments could be modulations of the same underlying component, possibly the N400. The difference in the timing of the effects is likely to be due to the fact that the shared segments in related stimulus pairs appeared in different word positions in the two experiments.


Author(s):  
Claus Bundesen ◽  
Thomas Habekost

The theory of visual attention introduced by Bundesen (1990) is reviewed. The authors first describe TVA as a formal computational theory of visual attention and summarize applications of TVA to psychological studies of performance (reaction times and error rates) in healthy human subjects. They then explain their neurophysiological interpretation of TVA, NTVA, and exemplify how NTVA accounts for findings from single-cell studies in primates. Finally the authors review how TVA has been applied to study attentional functions in neuropsychological, pharmacological, and genetic research.


2016 ◽  
Vol 59 (3) ◽  
pp. 501-510 ◽  
Author(s):  
Hettie Roebuck ◽  
Claudia Freigang ◽  
Johanna G. Barry

Purpose Continuous performance tasks (CPTs) are used to measure individual differences in sustained attention. Many different stimuli have been used as response targets without consideration of their impact on task performance. Here, we compared CPT performance in typically developing adults and children to assess the role of stimulus processing on error rates and reaction times. Method Participants completed a CPT that was based on response to infrequent targets, while monitoring and withholding responses to regular nontargets. Performance on 3 stimulus conditions was compared: visual letters (X and O), their auditory analogs, and auditory pure tones. Results Adults showed no difference in error propensity across the 3 conditions but had slower reaction times for auditory stimuli. Children had slower overall reaction times. They responded most quickly to the visual target and most slowly to the tone target. They also made more errors in the tone condition than in either the visual or the auditory spoken CPT conditions. Conclusions The results suggest error propensity and reaction time variations on CPTs cannot solely be interpreted as evidence of inattention. They also reflect stimulus-specific influences that must be considered when testing hypotheses about modality-specific deficits in sustained attention in populations with different developmental disorders.


2007 ◽  
Vol 28 (1) ◽  
pp. 135-156 ◽  
Author(s):  
MARJA PORTIN ◽  
MINNA LEHTONEN ◽  
MATTI LAINE

This study investigated the recognition of Swedish inflected nouns in two participant groups. Both groups were Finnish-speaking late learners of Swedish, but the groups differed in regard to their Swedish language proficiency. In a visual lexical decision task, inflected Swedish nouns from three frequency ranges were contrasted with corresponding monomorphemic nouns. The reaction times and error rates suggested morphological decomposition for low-frequency inflected words. Yet, both medium- and high-frequency inflected words appeared to possess full-form representations. Despite an overall advantage for the more proficient participants, this pattern was present in both groups. The results indicate that even late exposure to a language can yield such input representations for morphologically complex words that are typical of native speakers.


Sign in / Sign up

Export Citation Format

Share Document