EHL film thickness in rolling element bearings evaluated by electrical capacitance method: a review

Author(s):  
Hui Cen ◽  
Dan Bai ◽  
Yanpu Chao ◽  
Yaohui Li ◽  
Ruihua Li
Author(s):  
Fadi Ali ◽  
Ivan Křupka ◽  
Martin Hartl

This study presents experimental results on the effect of out-of-contact lubricant channeling on the tribological performance of nonconformal contacts under starved lubrication. Channeling of lubricant was carried out by adding a slider with a limited slot for scraping the displaced lubricant on one of mating surfaces (ball). Thus, the scraped lubricant is forced to flow back into the depleted track through the limited slot resulting in robust replenishment. The measurements have been conducted using optical tribometer (ball-on-disc) equipped with a digital camera and torque sensor. The effect of lubricant channeling was compared to the original contact condition by means of measuring friction and film thickness. The results show that the out-of-contact lubricant channeling leads to a significant enhancement of film thickness and friction reduction under starved conditions. Indeed, the starved elastohydrodynamic lubrication contacts transformed to the fully flooded regime after introducing the flow reconditioning. Moreover, the film thickness decay over time, which is common with starved elastohydrodynamic lubrication contacts, has not been observed in the case of lubricant channeling. However, the beneficial effect of lubricant channeling diminishes as the original contact condition tends to the fully flooded regime. The results of this study can be easily implemented in practical applications such as radial and thrust rolling-element bearings.


1990 ◽  
Vol 112 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Dongchu Zhao

A method for measuring the lubricant condition with strain gage in rolling element bearings and the instrument used are introduced. In order to illustrate the method and the instrument, the theory of measuring lubricant films in rolling element bearings using strain technique, test apparatus, microcomputer hardware as well as software, flow charts for the main program and subprograms, are first described in detail. In addition, the lubricant film thickness is measured for several different lubricants and results are compared with theoretical ones. It is demonstrated that using the method and the instrument introduced in this paper, one can measure the lubricant condition inside bearings very accurately.


Author(s):  
Mohamed H. Abbas ◽  
Sayed M. Metwalli

Rolling element bearings operation depends on some variables contributing to the machine element performance. The present work attempts to improve the performance of rolling element bearings through the increase of fatigue life and the reduction of bearing wear. The formulation is based on Elastohydrodynamic to maximize the realistically evaluated minimum film thickness without significant increase in viscous friction torque. The multiobjective problem can then be stated as maximization of minimum film thickness and minimization of total friction torque. Design vectors are reduced in the present study relative to previous studies as some variables are considered as dependent variables. A new important parameter is introduced in this study as a design variable, which is the viscosity of lubricant (η0 (Pa.s)). Lubricant viscosity contributes drastically in either increasing minimum film thickness separation or increasing the frictional torque arising in bearing. A multi-objective optimization using Genetic Algorithm is used in order to evaluate Pareto optimal solutions. Another multi-objective problem has been formulated such as a two objective problem involving maximizing minimum film thickness, and minimizing the bearing elements size (i.e.: ball diameter and mean diameter) through subjecting the bearing to the maximum allowable compressive stress of the elements. Heuristic gradient projection method is used in solving such a problem, as it can efficiently seek the optimum point in less than five iterations. In such a case, the design variables are reduced to two variables, which are the ball diameter and mean diameter. Full design vector consideration is also performed.


Author(s):  
Xingnan Zhang ◽  
Romeo Glovnea

Rolling bearings are the second most used machine components. They work in what it is called elastohydrodynamic lubrication regime. The geometry of rolling element bearings makes the direct measurement of the lubricant film thickness a challenging task. Optical interferometry is widely used in laboratory conditions for studying elastohydrodynamic lubrication however it cannot be used directly in rolling element bearings thus the only suitable methods are electrical techniques. Of these, film thickness measurement based on electrical capacitance of the contacts has been used in the past by a number of authors. One of the limitations of the capacitance method, when used in rolling bearings, is that it cannot distinguish between the contacts of every rolling element and raceway on one hand and on the other between the inner and outer ring contacts. In the present study the authors used an original test rig which can measure the film thickness for only one ball and separately for the inner and outer rings of a radial ball bearing. This paper thus shows for the first-time results of the lubricant film thickness, at the inner and outer raceways, in grease lubricated rolling bearings.


Friction ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 179-190
Author(s):  
Xinming Li ◽  
Feng Guo ◽  
Gerhard Poll ◽  
Yang Fei ◽  
Ping Yang

Abstract Although most rolling element bearings are grease lubricated, the underlying mechanisms of grease lubrication has not been fully explored. This study investigates grease film evolution with glass disc revolutions in rolling elastohydrodynamic lubrication (EHL) contacts. The evolution patterns of the grease films were highly related to the speed ranges and grease structures. The transference of thickener lumps, film thickness decay induced by starvation, and residual layer were recognized. The formation of an equilibrium film determined by the balance of lubricant loss and replenishment was analyzed. The primary mechanisms that dominate grease film formation in different lubricated contacts were clarified.


2021 ◽  
pp. 107754632110161
Author(s):  
Aref Aasi ◽  
Ramtin Tabatabaei ◽  
Erfan Aasi ◽  
Seyed Mohammad Jafari

Inspired by previous achievements, different time-domain features for diagnosis of rolling element bearings are investigated in this study. An experimental test rig is prepared for condition monitoring of angular contact bearing by using an acoustic emission sensor for this purpose. The acoustic emission signals are acquired from defective bearing, and the sensor takes signals from defects on the inner or outer race of the bearing. By studying the literature works, different domains of features are classified, and the most common time-domain features are selected for condition monitoring. The considered features are calculated for obtained signals with different loadings, speeds, and sizes of defects on the inner and outer race of the bearing. Our results indicate that the clearance, sixth central moment, impulse, kurtosis, and crest factors are appropriate features for diagnosis purposes. Moreover, our results show that the clearance factor for small defects and sixth central moment for large defects are promising for defect diagnosis on rolling element bearings.


Sign in / Sign up

Export Citation Format

Share Document