scholarly journals Equiaxed Grain Growth in Swaged UO2Compact

1967 ◽  
Vol 4 (7) ◽  
pp. 339-345
Author(s):  
Tadashi KUBOTA ◽  
Yoshinobu SEKI ◽  
Shūichirō TAKAHASHI
Keyword(s):  
2019 ◽  
Vol 50 (4) ◽  
pp. 1773-1786 ◽  
Author(s):  
Akash Pakanati ◽  
Knut Omdal Tveito ◽  
Mohammed M’Hamdi ◽  
Hervé Combeau ◽  
Miha Založnik

1979 ◽  
Vol 46 (2) ◽  
pp. 263-267 ◽  
Author(s):  
William L. Baldewicz ◽  
Ahmed R. Wazzan ◽  
David Okrent

1999 ◽  
Vol 265 (1-2) ◽  
pp. 112-116 ◽  
Author(s):  
O.V. Khoruzhii ◽  
S.Yu. Kourtchatov ◽  
V.V. Likhanskii

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2604 ◽  
Author(s):  
Miguel Lopez ◽  
Christina Pickett ◽  
Edel Arrieta ◽  
Lawrence E. Murr ◽  
Ryan B. Wicker ◽  
...  

An essentially fully acicular alpha-prime martensite within an equiaxed grain structure was produced in an Electron Beam Melting (EBM)-fabricated Ti-6Al-2Sn-4Zr-2Mo (Ti6242) alloy using two different Arcam EBM machines: An A2X system employing tungsten filament thermionic electron emission, and a Q20 system employing LaB6 thermionic electron emission. Post-process Hot Isostatic Pressing (HIP) treatment for 2 h at 850, 950, and 1050 °C resulted in grain refinement and equiaxed grain growth along with alpha-prime martensite decomposition to form an intragranular mixture of acicular martensite and alpha at 850 °C, and acicular alpha phase at 950 and 150 °C, often exhibiting a Widmanstätten (basketweave) structure. The corresponding tensile yield stress and ultimate tensile strength (UTS) associated with the grain growth and acicular alpha evolution decreased from ~1 and ~1.1 GPa, respectively, for the as-fabricated Ti6242 alloy to ~0.8 and 0.9 GPa, respectively, for HIP at 1050 °C. The optimum elongation of ~15–16% occurred for HIP at 850 °C; for both EBM systems. Because of the interactive role played by equiaxed grain growth and the intragrain, acicular alpha microstructures, the hardness varied only by ~7% between 41 and 38 HRC.


2004 ◽  
Vol 842 ◽  
Author(s):  
Kyosuke Yoshimi ◽  
Akira Yamauchi ◽  
Ryusuke Nakamura ◽  
Sadahiro Tsurekawa ◽  
Shuji Hanada

ABSTRACTThe effect of heat treatments (aging or annealing) on microstructure was investigated for rapidly solidified ribbons of near-stoichiometric TiCo. In as-spun ribbons, it was observed by TEM that an equiaxed grain structure was developed and its crystal structure had been already B2-ordered, while a small amount of a second phase, Ti2Co, finely disperses in grains and along grain boundaries. Some grains were dislocation-free but others contained curved or helical dislocations and prismatic loops having a Burgers vector parallel to <100> directions. By annealing the as-spun ribbons at 700°C for 24h, the dislocation density was obviously increased compared with that of the as-spun ribbons, while grain growth appears to occur slightly. The increase of the dislocation density in the annealed ribbons is believed to result from the condensation and/or absorption of supersaturated vacancies. Therefore, the TEM observation results indicate that a large amount of supersaturated thermal vacancies were retained in the TiCo ribbons by the rapid solidification.


Author(s):  
B. B. Rath ◽  
J. E. O'Neal ◽  
R. J. Lederich

Addition of small amounts of erbium has a profound effect on recrystallization and grain growth in titanium. Erbium, because of its negligible solubility in titanium, precipitates in the titanium matrix as a finely dispersed second phase. The presence of this phase, depending on its average size, distribution, and volume fraction in titanium, strongly inhibits the migration of grain boundaries during recrystallization and grain growth, and thus produces ultimate grains of sub-micrometer dimensions. A systematic investigation has been conducted to study the isothermal grain growth in electrolytically pure titanium and titanium-erbium alloys (Er concentration ranging from 0-0.3 at.%) over the temperature range of 450 to 850°C by electron microscopy.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Sign in / Sign up

Export Citation Format

Share Document