Tibialis posterior muscle activity alteration with foot orthosis insertion measured by fine-wire electromyography

2021 ◽  
pp. 1-9
Author(s):  
Hiroshi Akuzawa ◽  
Atsushi Imai ◽  
Satoshi Iizuka ◽  
Naoto Matsunaga ◽  
Koji Kaneoka
Author(s):  
Ehsan Tarkesh ◽  
Mohammad H. Elahinia ◽  
Mohamed Samir Hefzy

This paper is on development of an active ankle foot orthosis (AAFO). This device will fill the gap in the existing research aimed at helping patients with drop foot muscle deficiencies as well as rehabilitation activities. Drop foot patients are unable to lift their foot because of reduced or no muscle activity around the ankle. The major causes of drop foot are severing of the nerve, stroke, cerebral palsy and multiple sclerosis. There are two common complications from drop foot. First, the patient cannot control the falling of their foot after heel strike, so that it slaps the ground on every step. The second complication is the inability to clear the toe during swing. This causes the patients to drag their toe on the ground throughout the swing.


2013 ◽  
Vol 38 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Hassan Saeedi ◽  
Mohammad E Mousavi ◽  
Basir Majddoleslam ◽  
Mehdi Rahgozar ◽  
Gholamreza Aminian ◽  
...  

Background:Due to blocking of pronation/dorsiflexion in flexible flat foot and restriction of these movements in using the University of California Berkeley Laboratory orthosis, provided pressures in sole by the orthosis were increased. Therefore, this article describes the evaluation of modified foot orthosis with flexible structure in the management of individuals with flexible flat foot.Case description and method:The patient was a 21-year-old male who had symptomatic flat foot. The modified foot orthosis included movable surface and the outside structure. The modified foot orthosis was evaluated by standing foot X-ray, comfort rate, electromyography of leg muscle and vertical ground reaction force during walking.Findings and outcomes:The modified foot orthosis improved the foot alignment and decreased the symptoms of flat foot with more comfort. Subtalar position by sub-maximum supination had higher position than neutral in sagittal plane. It may increase the muscle activity of peroneus longus by 7% compared to barefoot, and there was a decrease of 11% ground reaction force in mid stance.Conclusion:The result of this single case evaluation only proposed the feasibility of this modified insole as the orthotic treatment in flexible flat foot.Clinical relevanceThe modified foot orthosis, which is mobile in the midfoot, is an orthosis for walking and standing in subjects with flexible flat foot.


2016 ◽  
Vol 28 (12) ◽  
pp. 3458-3462 ◽  
Author(s):  
Hiroshi Akuzawa ◽  
Atsushi Imai ◽  
Satoshi Iizuka ◽  
Naoto Matsunaga ◽  
Koji Kaneoka

2019 ◽  
Vol 43 (6) ◽  
pp. 576-596 ◽  
Author(s):  
Joanna Reeves ◽  
Richard Jones ◽  
Anmin Liu ◽  
Leah Bent ◽  
Emma Plater ◽  
...  

Background: External devices are used to manage musculoskeletal pathologies by altering loading of the foot, which could result in altered muscle activity that could have therapeutic benefits. Objectives: To establish if evidence exists that footwear, foot orthoses and taping alter lower limb muscle activity during walking and running. Study design: Systematic literature review. Methods: CINAHL, MEDLINE, ScienceDirect, SPORTDiscus and Web of Science databases were searched. Quality assessment was performed using guidelines for assessing healthcare interventions and electromyography methodology. Results: Thirty-one studies were included: 22 related to footwear, eight foot orthoses and one taping. In walking, (1) rocker footwear apparently decreases tibialis anterior activity and increases triceps surae activity, (2) orthoses could decrease activity of tibialis posterior and increase activity of peroneus longus and (3) other footwear and taping effects are unclear. Conclusion: Modifications in shoe or orthosis design in the sagittal or frontal plane can alter activation in walking of muscles acting primarily in these planes. Adequately powered research with kinematic and kinetic data is needed to explain the presence/absence of changes in muscle activation with external devices. Clinical relevance This review provides some evidence that foot orthoses can reduce tibialis posterior activity, potentially benefitting specific musculoskeletal pathologies.


2011 ◽  
Vol 33 (1) ◽  
pp. 102-107 ◽  
Author(s):  
Koji Ohata ◽  
Tadashi Yasui ◽  
Tadao Tsuboyama ◽  
Noriaki Ichihashi

2021 ◽  
Vol 45 (6) ◽  
pp. 459-470
Author(s):  
Dong Joon Cho ◽  
So Young Ahn ◽  
Soo-Kyung Bok

Objective To examine the changes in the cross-sectional area (CSA) ratio of the ankle invertors and evertors following rigid foot orthosis (RFO) application in children with symptomatic flexible flatfoot and to determine the correlation between the degree of change in CSA ratio and pain-severity after RFO application.Methods We included 24 children with symptomatic flexible flatfoot without comorbidities and measured the CSAs of tibialis anterior (TA), tibialis posterior (TP), and peroneus longus (PL) using ultrasonography, resting calcaneal stance position (RCSP) angle, calcaneal pitch (CP), Meary’s angle, talonavicular coverage angle, and talocalcaneal angle using radiography, and foot function index (FFI) at baseline and 12 months after RFO application. We analyzed 48 data by measuring both feet of 24 children. The CSA ratios, the ratio of CSA of each muscle to the sum of CSA of TA, TP, and PL, were also compared. Correlations between the degree of change in FFI, each muscle’s CSA ratio, RCSP angle, and radiographic measurements were investigated.Results Following RFO application, significant increase in the PL ratio and CP and significant decrease in the RCSP angle, FFI total, pain, and disability scores were observed. The degree of change in the total score, pain, and disability score of FFI were significantly correlated with the degree of change in the PL ratio and RCSP angle.Conclusion RFOs applied to children with symptomatic flexible flatfoot might reduce the compensatory activities of the ankle invertors, thereby increasing the PL ratio, and pain decreases as the PL ratio increases.


Sign in / Sign up

Export Citation Format

Share Document