Development of seismic fragility curves for the existing RC building with plain bars

Author(s):  
Mahdi Adibi ◽  
Roozbeh Talebkhah
2021 ◽  
Vol 1026 (1) ◽  
pp. 012007
Author(s):  
V J Vedhanayaghi ◽  
M Manoharan ◽  
J Jasper Daniel ◽  
S Premkumar ◽  
S ArunBharathi

Abstract. Seismic fragility analysis is essential for seismic risk assessment of structures. This study focuses on the damage probability assessment of the mid-story isolation buildings with different locations of the isolation system. To this end, the performance-based fragility analysis method of the mid-story isolation system is proposed, adopting the maximum story drifts of structures above and below the isolation layer and displacement of the isolation layer as performance indicators. Then, the entire process of the mid-story isolation system, from the initial elastic state to the elastic-plastic state, then to the limit state, is simulated on the basis of the incremental dynamic analysis method. Seismic fragility curves are obtained for mid-story isolation buildings with different locations of the isolation layer, each with fragility curves for near-field and far-field ground motions, respectively. The results indicate that the seismic fragility probability subjected to the near-field ground motions is much greater than those subjected to the far-field ground motions. In addition, with the increase of the location of the isolation layer, the dominant components for the failure of mid-story isolated structures change from superstructure and isolation system to substructure and isolation system.


2017 ◽  
Vol 103 ◽  
pp. 02017
Author(s):  
Fadzli Mohamed Nazri ◽  
Syamimi Tahar ◽  
Siti Nur Aqilah Saruddin ◽  
Shahiron Shahidan

2021 ◽  
pp. 875529302110525
Author(s):  
Libo Chen ◽  
Caigui Huang ◽  
Haiqiang Chen ◽  
Zhenfeng Zheng

Seismic fragility assessment widely uses a probabilistic measure for assessing the seismic performance of structural components or systems. This article proposes a copula-based seismic fragility (CBSF) method to derive the system-level damage probabilities of reinforced concrete bridges and to consider the correlation among seismic demands of components. First, the marginal distribution functions of the random variables are calibrated, and three Archimedean copula models are considered. Subsequently, the relevant parameters of the copula models are estimated using the semi-parametric maximum likelihood method. Next, the damage probabilities of a bridge system are calculated based on the joint distribution model with the most suitable copula model and the calibrated marginal distribution functions. Finally, the CBSF method is used to estimate the damage probability of a simply supported box girder bridge. The performance of the CBSF method is validated by a comparison of fragility curves obtained using the CBSF method and the probabilistic seismic demand analysis (PSDA) method. The comparative results demonstrate that the fragility curves obtained by the CBSF method are better than those obtained using the PSDA method. The proposed CBSF model can serve as a tool for assessing the seismic performance of structures and estimating the economic loss of existing bridge systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Zhiming He ◽  
Qingjun Chen

The measured vertical peak ground acceleration was larger than the horizontal peak ground acceleration. It is essential to consider the vertical seismic effect in seismic fragility evaluation of large-space underground structures. In this research, an approach is presented to construct fragility curves of large-space underground structures considering the vertical seismic effect. In seismic capacity, the soil-underground structure pushover analysis method which considers the vertical seismic loading is used to obtain the capacity curve of central columns. The thresholds of performance levels are quantified through a load-drift backbone curve model. In seismic demand, it is evaluated through incremental dynamic analysis (IDA) method under the excitation of horizontal and vertical acceleration, and the soil-structure-interaction and ground motion characteristics are also considered. The IDA results are compared in terms of peak ground acceleration and peak ground velocity. To construct the fragility curves, the evolutions of performance index versus the increasing earthquake intensity are performed, considering related uncertainties. The result indicates that if we ignore the vertical seismic effect to the fragility assessment of large-space underground structures, the exceedance probabilities of damage of large-space underground structures will be underestimated, which will result in an unfavorable assessment result.


Sign in / Sign up

Export Citation Format

Share Document