Effects of blending manufactured sand and offshore sand on rheological, mechanical and durability characterization of lime-cement masonry mortar

Author(s):  
Branavan Arulmoly ◽  
Chaminda Konthesingha ◽  
Anura Nanayakkara
2013 ◽  
Vol 368-370 ◽  
pp. 1039-1042
Author(s):  
Cheng Xian Cen ◽  
Cheng Han Cen ◽  
Jing Qi Bai

With the development of various infrastructure construction, the demand of sand is increasing. The supply of natural sand could not meet the requirements of engineering due to the excessive exploitation and using the Manufactured sand which instead of natural sand is one of the effective methods to resolve the shortage of natural sand. Based on the experimental study of mechanism of used sand and natural sand masonry mortar in water retention, density and consistence, this paper analyzed the difference between the masonry mortar mixed manufactured sand and the one mixed by Natural sand. The result of study can provide the reference in engineering practice which use the masonry mortar mixed manufactured sand not but mixed by Natural sand.


2013 ◽  
Vol 687 ◽  
pp. 527-531 ◽  
Author(s):  
Jesús Gadea ◽  
Miguel Angel Salas ◽  
Sara Gutiérrez-González ◽  
A. Rodríguez ◽  
Matthieu Horgnies ◽  
...  

This paper presents the results obtained in the production of lightweight mortars where different amounts of sand were replaced by polyamide powder wastes. The characterization of the materials obtained was carried out in fresh and hardened state, considering especially the vapor permeability and micro and macroporosity properties. It has been found that the progressive increase of polymer influences the behavior of the mortar, increasing the water vapour permeability as well as the total porosity of the material, which carried on a decrease in the density of the composites fabricated. These results suggest the employment of polyamide powder residue as sand could be useful with the aim of manufacture recycled lightweight masonry mortar.


2019 ◽  
Vol 61 (Vol 61 (2018)) ◽  
Author(s):  
Daniele Mirabile Gattia ◽  
Graziella ROSELLI ◽  
Omar ALSHAWA ◽  
Paolo CINAGLIA ◽  
Giuseppe DI GIROLAMI ◽  
...  

2016 ◽  
Vol 114 ◽  
pp. 595-601 ◽  
Author(s):  
Weiguo Shen ◽  
Zhenguo Yang ◽  
Lianghong Cao ◽  
Liu Cao ◽  
Yi Liu ◽  
...  

Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Sign in / Sign up

Export Citation Format

Share Document