scholarly journals Dam-Break Flow in the Presence of Obstacle: Experiment and CFD Simulation

Author(s):  
Hatice Ozmen-Cagatay ◽  
Selahattin Kocaman
2017 ◽  
Vol 24 (s2) ◽  
pp. 172-180
Author(s):  
Shuzheng Sun ◽  
Wenlei Du ◽  
Hui Li

Abstract The tumblehome hull adopts some novelty designs such as low-tumblehome freeboard and wave-piercing bow. The new form design makes the ship have many special hydrodynamic performances. Especially the green water of tumblehome hull is different from that of hulls with flare free board. Green water is a strong nonlinear phenomenon of ship-wave interaction, the variation of free surface of liquid is complicated, and there are still some difficulties to solve green water problems well with numerical simulation method. In this paper firstly the motion responses of the tumblehome hull was calculated based on 3D potential theory, and then the dam-break flow model was used to calculate green water height and pressure distribution. According to the result of numerical simulation, some typical working conditions are chosen for 3D CFD simulation using RANS method. The results of numerical simulation methods are compared with the experimental results measured in towing tank. The influence of different ship form parameters and wave parameters to the green water of tumblehome hull is analyzed, and some regularities of green water on tumblehome hull in regular waves are summarized.


2021 ◽  
Vol 9 (1) ◽  
pp. 67
Author(s):  
Hiroshi Takagi ◽  
Fumitaka Furukawa

Uncertainties inherent in gate-opening speeds are rarely studied in dam-break flow experiments due to the laborious experimental procedures required. For the stochastic analysis of these mechanisms, this study involved 290 flow tests performed in a dam-break flume via varying gate speeds between 0.20 and 2.50 m/s; four pressure sensors embedded in the flume bed recorded high-frequency bottom pressures. The obtained data were processed to determine the statistical relationships between gate speed and maximum pressure. The correlations between them were found to be particularly significant at the sensors nearest to the gate (Ch1) and farthest from the gate (Ch4), with a Pearson’s coefficient r of 0.671 and −0.524, respectively. The interquartile range (IQR) suggests that the statistical variability of maximum pressure is the largest at Ch1 and smallest at Ch4. When the gate is opened faster, a higher pressure with greater uncertainty occurs near the gate. However, both the pressure magnitude and the uncertainty decrease as the dam-break flow propagates downstream. The maximum pressure appears within long-period surge-pressure phases; however, instances considered as statistical outliers appear within short and impulsive pressure phases. A few unique phenomena, which could cause significant bottom pressure variability, were also identified through visual analyses using high-speed camera images. For example, an explosive water jet increases the vertical acceleration immediately after the gate is lifted, thereby retarding dam-break flow propagation. Owing to the existence of sidewalls, two edge waves were generated, which behaved similarly to ship wakes, causing a strong horizontal mixture of the water flow.


2021 ◽  
Vol 110 ◽  
pp. 102583
Author(s):  
Elona Fetahu ◽  
Oguz Yilmaz

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Le Thi Thu Hien ◽  
Nguyen Van Chien

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.


2003 ◽  
Vol 47 ◽  
pp. 799-804
Author(s):  
Juichiro AKIYAMA ◽  
Mirei SHIGE-EDA ◽  
Kazumasa OOTA

Author(s):  
S. Esmaeeli Mohsenabadi ◽  
M. Mohammadian ◽  
I. Nistor ◽  
H. Kheirkhah Gildeh

Sign in / Sign up

Export Citation Format

Share Document