scholarly journals Stochastic Uncertainty in a Dam-Break Experiment with Varying Gate Speeds

2021 ◽  
Vol 9 (1) ◽  
pp. 67
Author(s):  
Hiroshi Takagi ◽  
Fumitaka Furukawa

Uncertainties inherent in gate-opening speeds are rarely studied in dam-break flow experiments due to the laborious experimental procedures required. For the stochastic analysis of these mechanisms, this study involved 290 flow tests performed in a dam-break flume via varying gate speeds between 0.20 and 2.50 m/s; four pressure sensors embedded in the flume bed recorded high-frequency bottom pressures. The obtained data were processed to determine the statistical relationships between gate speed and maximum pressure. The correlations between them were found to be particularly significant at the sensors nearest to the gate (Ch1) and farthest from the gate (Ch4), with a Pearson’s coefficient r of 0.671 and −0.524, respectively. The interquartile range (IQR) suggests that the statistical variability of maximum pressure is the largest at Ch1 and smallest at Ch4. When the gate is opened faster, a higher pressure with greater uncertainty occurs near the gate. However, both the pressure magnitude and the uncertainty decrease as the dam-break flow propagates downstream. The maximum pressure appears within long-period surge-pressure phases; however, instances considered as statistical outliers appear within short and impulsive pressure phases. A few unique phenomena, which could cause significant bottom pressure variability, were also identified through visual analyses using high-speed camera images. For example, an explosive water jet increases the vertical acceleration immediately after the gate is lifted, thereby retarding dam-break flow propagation. Owing to the existence of sidewalls, two edge waves were generated, which behaved similarly to ship wakes, causing a strong horizontal mixture of the water flow.

2018 ◽  
Vol 12 (02) ◽  
pp. 1840006 ◽  
Author(s):  
Cheng Chen ◽  
Bruce W. Melville ◽  
N. A. K. Nandasena

For a preliminary investigation of the impact of a tsunami surge on wharf piles, a tsunami flume was built in a laboratory, and a dam break flow was generated by a gate-reservoir system to simulate a tsunami surge. In addition, a vertical wall was installed in front of the wharf model so that its effect in reducing tsunami load could be studied. Five different tsunami surge strengths were generated by this gate-reservoir system. Wave transducers were used in the test flume to capture surge heights and velocities, and hence the surge front profiles, for different surge strengths. High-speed video cameras (210 frames per second) were used to record the flow motion of the tsunami surge, and pressure sensors (1000[Formula: see text]Hz in frequency) were used to capture the time histories of the tsunami pressure on the wharf piles. Four stages of tsunami surge motions were observed by this high-speed camera. Accordingly, the pressure time history can be divided into three phases. In our experimental range, pressures were influenced by surge height and wall height, but not by the wall position. Based on the dimensionless experimental data (pile heights, surge heights, vertical wall heights, and surge pressures), equations for estimating tsunami loads on wharf pile are proposed, expressing surge front (peak impact) pressure and quasi-steady pressure as functions of surge height, wall height, and pile height.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2584 ◽  
Author(s):  
Jassiel V. Hernández-Fontes ◽  
Paulo de Tarso T. Esperança ◽  
Juan F. Bárcenas Graniel ◽  
Sergio H. Sphaier ◽  
Rodolfo Silva

This paper presents a two-dimensional experimental study of the interaction of wet dam-break bores with a fixed structure, regarding the evolution of the incident flows and the resultant green water events on the deck. The study employs image-based techniques to analyse flow propagation from videos taken by high-speed cameras, considering five different shipping water cases. The features of small air-cavities formed in some green water events of the plunging-dam-break type were analysed. Then, the spatial and temporal distribution of water elevations of the incident bores and green water were investigated, providing a database to be used for model validations. Some guidelines for the selection of the freeboard exceedance, which is of relevance for green water simulations, were provided. Finally, the relationship between the incident bore and water-on-deck kinematics was discussed. The proposed study can be used as a reference for performing simplified and systematic analyses of green water in a different two-dimensional setup, giving high-resolution data that visually capture the flow patterns and allow model validations to be performed.


2011 ◽  
Vol 05 (05) ◽  
pp. 401-428 ◽  
Author(s):  
PENGZHI LIN ◽  
YINNA WU ◽  
JUNLI BAI ◽  
QUANHONG LIN

Dam-break flows are simulated numerically by a two-dimensional shallow-water-equation model that combines a hydrodynamic module and a sediment transport module. The model is verified by available analytical solutions and experimental data. It is demonstrated that the model is a reliable tool for the simulation of various transient shallow water flows and the associated sediment transport and bed morphology on complex topography. The validated model is then applied to investigate the potential dam-break flows from Tangjiashan Quake Lake resulting from Wenchuan Earthquake in 2008. The dam-break flow evolution is simulated by using the model in order to provide the flooding patterns (e.g., arrival time and flood height) downstream. Furthermore, the sediment transport and bed morphology simulation is performed locally to study the bed variation under the high-speed dam-break flow.


SIMULATION ◽  
2021 ◽  
pp. 003754972110084
Author(s):  
Alibek Issakhov ◽  
Yeldos Zhandaulet

In this paper, the effects of water on obstacles in dam-break flow for different angles of the inclined planes have been numerically examined. The presented computational data are compared with data from the experiment and computational simulation data of other authors. Good agreements between the obtained simulation results and measurement data demonstrate the satisfactory performance of the mathematical model and the numerical algorithm when reproducing a dam-break flow. Additionally, various problems were also considered: the effect of pressure distribution on the dam walls for different angles of the inclined plane. It was found that pressure distribution on the wall when the inclined angle [Formula: see text] = 15° was almost two times more than without inclination. To reduce the shock pressure value a new form of obstacle was used. With a new form of obstacle, the maximum pressure value on the dam wall decreased more than three times.


Author(s):  
Takashi Fukuda ◽  
Shinya Nakamura ◽  
Tokuzo Miyachi ◽  
Sanetoshi Saito ◽  
Nobuyuki Kimura ◽  
...  

The impulsive pressure wave (micro-pressure wave) emitted from a tunnel portal is one of the environmental problems associated with high-speed railways. The principle underlying the countermeasures for this micro-pressure wave is to reduce the pressure gradient of the compression wavefront at the tunnel portal. This study investigated the influence of the ballast layer on the rate at which compression waves steepen in railway tunnels. Field measurements in an actual Shinkansen tunnel with slab tracks were recorded before and after installing ballast along most of the length of the tunnel. Previously published results on the spread of the compression wavefront in a ballasted track tunnel are also presented for comparison. A rapid method using an empirical equation is shown to accurately estimate the variation in the maximum pressure gradient of the compression wavefront in certain conditions. A more widely applicable estimation method using a numerical analysis is also demonstrated, which describes the distortion of the compression waveform. The results show that both of these methods can estimate the influence of the ballast quantity on mitigating the compression wavefront steepening in Shinkansen tunnels.


2021 ◽  
Author(s):  
Youtong Rong ◽  
Paul Bates ◽  
Jeffrey Neal

<p>The flood caused by a dam-break event generally contains a large amount of energy, and it can be destructive to the downstream buildings and structures. An experiment-validated three-dimensional numerical model was designed to investigate the impact of dam-break flood on structures with different arrangements. The Eulerian two-phase flow model and the smooth particle dynamics method are applied separately to solve the flow motion, and  the deformation characteristics of buildings under the flood impact are evaluated by fluid-structure interaction model. An experiment is constructed to validate the numerical simulation. The results show that the structure suffers a large instantaneous impact pressure when the flood water first contacts the structure, and the value of this pressure can reach 1.5-3.0 times that of the maximum pressure after the first impact, and the maximum total pressure of the upstream building surface is about 1800N. The deformation near the door and windows is obvious, and the maximum deformation can reach 600μm, which further results in the large deformation of the gable and roof on both sides. Moreover, the arrangement of buildings has different blocking effect on flood. The back-row buildings arranged in alignment along the flow direction still has to bear 20% flood impact, and the front row buildings arranged alternately bear 90% high-speed flow impact. The structural damage is evaluated by the material failure criterion, and the weak position of buildings is identified, providing an optimal design of buildings.</p>


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 431
Author(s):  
Junjie Ye ◽  
Hao Sun

In order to study the influence of an integration time step on dynamic calculation of a vehicle-track-bridge under high-speed railway, a vehicle-track-bridge (VTB) coupled model is established. The influence of the integration time step on calculation accuracy and calculation stability under different speeds or different track regularity states is studied. The influence of the track irregularity on the integration time step is further analyzed by using the spectral characteristic of sensitive wavelength. According to the results, the disparity among the effect of the integration time step on the calculation accuracy of the VTB coupled model at different speeds is very small. Higher speed requires a smaller integration time step to keep the calculation results stable. The effect of the integration time step on the calculation stability of the maximum vertical acceleration of each component at different speeds is somewhat different, and the mechanism of the effect of the integration time step on the calculation stability of the vehicle-track-bridge coupled system is that corresponding displacement at the integration time step is different. The calculation deviation of the maximum vertical acceleration of the car body, wheel-sets and bridge under the track short wave irregularity state are greatly increased compared with that without track irregularity. The maximum vertical acceleration of wheel-sets, rails, track slabs and the bridge under the track short wave irregularity state all show a significant declining trend. The larger the vibration frequency is, the smaller the range of integration time step is for dynamic calculation.


2021 ◽  
Vol 110 ◽  
pp. 102583
Author(s):  
Elona Fetahu ◽  
Oguz Yilmaz

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Le Thi Thu Hien ◽  
Nguyen Van Chien

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.


Sign in / Sign up

Export Citation Format

Share Document