Effect of surface emissivity and retrieval algorithms on the accuracy of Land Surface Temperature retrieved from Landsat data

2021 ◽  
Vol 12 (10) ◽  
pp. 983-993
Author(s):  
Rahul Harod ◽  
R. Eswar ◽  
Bimal K. Bhattacharya
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chunlei Meng ◽  
Huoqing Li

AbstractFengyun-4A is the new generation of Chinese geostationary meteorological satellites. Land surface albedo, land surface emissivity and land surface temperature are key states for land surface modelling. In this paper, the land surface albedo, land surface emissivity and land surface temperature data from Fengyun-4A were assimilated into the Integrated Urban land Model. The Fengyun-4A data are one of the data sources for the land data assimilation system which devoted to produce the high spatial and temporal resolution, multiple parameters near real-time land data sets. The Moderate-Resolution Imaging Spectroradiometer (MODIS) LSA and LSE data, the Institute of Atmospheric Physics, China Academy of Sciences (IAP) 325 m tower observation data and the observed 5 cm and 10 cm soil temperature data in more than 100 sites are used for validation. The results indicate the MODIS land surface albedo is much smaller than the Fengyun-4A and is superior to the Fengyun-4A for the Institute of Atmospheric Physics, China Academy of Sciences 325 m tower site. The Moderate-Resolution Imaging Spectroradiometer land surface emissivity is smaller than the Fengyun-4A in barren land surface and the differences is relatively small for other land use and land cover categories. In most regions of the research area, the Fengyun-4A land surface albedo and land surface emissivity are larger than those of the simulations. After the land surface albedo assimilation, in most regions the simulated net radiation was decreased. After the land surface emissivity assimilation, in most regions the simulated net radiation was increased. After the land surface temperature assimilation, the biases of the land surface temperature were decreased apparently; the biases of the daily average 5 cm and 10 cm soil temperature were decreased.


Author(s):  
Ibra Lebbe Mohamed Zahir

Land Surface Temperature is a one of the key variable of Global climate changes and model which estimate radiating budget in heat balance as control of climate model. It is a major influenced factor by the ability of the surface emissivity. In this study, were used Landsat 8 satellite image that have Operational Land Imager and Thermal Infrared Sensor to calculate Land Surface Temperature through geospatial technology over Ampara district, Sri Lanka. The Land Surface Temperature was estimated with respect to Land Surface Emissivity and Normalized Difference Vegetation Index values determined from the Red and Near Infrared channels. Land Surface Emissivity was processed directly by the thermal Infrared bands. Pixels based calculation were used to effort at LANDSAT 8 images that thermal Band 10 various dates in this study. The results were achievable to compute Normalized Difference Vegetation Index, Land Surface Emissivity, and Land Surface Temperature with applicable manner to compare with land use/ land cover data. It determines and predicts the changes of surface temperature to favorable to decision making process for the society. Study area faces seasonal drought in Sri Lanka, the prediction method that how land can be efficiently used with the present condition. Therefore, the Land Surface Temperature estimation can prove whether new irrigation systems for agricultural activities or can transformed source of energy into useful form that introducing solar hubs for energy production in future.


Sign in / Sign up

Export Citation Format

Share Document