Shining (Invisible) Light On Viral Pathogens: Virucidal Contamination Control Strategies Using UV-C Light

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Tim Sandle

Respiratory droplets are coronaviruses primary transmission mode and thus the majority of coronavirus risk mitigation strategies focus on the control of air. However, surface contact remains an alternative infection route. Hence, it remains a concern that the SARS CoV-2 virus can remain viable on surfaces for several hours.

2021 ◽  
Vol 27 (4) ◽  
Author(s):  
Tim Sandle

Respiratory droplets are coronaviruses primary transmission mode and thus the majority of coronavirus risk mitigation strategies focus on the control of air. However, surface contact remains an alternative infection route. Hence, it remains a concern that the SARS CoV-2 virus can remain viable on surfaces for several hours.


2011 ◽  
Vol 140 (8) ◽  
pp. 1414-1429 ◽  
Author(s):  
O. ROTARIU ◽  
I. D. OGDEN ◽  
L. MacRITCHIE ◽  
K. J. FORBES ◽  
A. P. WILLIAMS ◽  
...  

SUMMARYE. coliO157 can be transmitted to humans by three primary (foodborne, environmental, waterborne) and one secondary (person-to-person transmission) pathways. A regression model and quantitative microbiological risk assessments (QMRAs) were applied to determine the relative importance of the primary transmission pathways in NE Scotland. Both approaches indicated that waterborne infection was the least important but it was unclear whether food or the environment was the main source of infection. The QMRAs over-predicted the number of cases by a factor of 30 and this could be because allE. coliO157 strains may not be equally infective and/or the level of infectivity in the dose–response model was too high. The efficacy of potential risk mitigation strategies to reduce human exposure toE. coliO157 using QMRAs was simulated. Risk mitigation strategies focusing on food and environment are likely to have the biggest impact on infection figures.


Author(s):  
Agnes Ann Feemster ◽  
Melissa Augustino ◽  
Rosemary Duncan ◽  
Anand Khandoobhai ◽  
Meghan Rowcliffe

Abstract Disclaimer In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose The purpose of this study was to identify potential failure points in a new chemotherapy preparation technology and to implement changes that prevent or minimize the consequences of those failures before they occur using the failure modes and effects analysis (FMEA) approach. Methods An FMEA was conducted by a team of medication safety pharmacists, oncology pharmacists and technicians, leadership from informatics, investigational drug, and medication safety services, and representatives from the technology vendor. Failure modes were scored using both Risk Priority Number (RPN) and Risk Hazard Index (RHI) scores. Results The chemotherapy preparation workflow was defined in a 41-step process with 16 failure modes. The RPN and RHI scores were identical for each failure mode because all failure modes were considered detectable. Five failure modes, all attributable to user error, were deemed to pose the highest risk. Mitigation strategies and system changes were identified for 2 failure modes, with subsequent system modifications resulting in reduced risk. Conclusion The FMEA was a useful tool for risk mitigation and workflow optimization prior to implementation of an intravenous compounding technology. The process of conducting this study served as a collaborative and proactive approach to reducing the potential for medication errors upon adoption of new technology into the chemotherapy preparation process.


Author(s):  
Leigh McCue

Abstract The purpose of this work is to develop a computationally efficient model of viral spread that can be utilized to better understand influences of stochastic factors on a large-scale system - such as the air traffic network. A particle-based model of passengers and seats aboard a single-cabin 737-800 is developed for use as a demonstration of concept on tracking the propagation of a virus through the aircraft's passenger compartment over multiple flights. The model is sufficiently computationally efficient so as to be viable for Monte Carlo simulation to capture various stochastic effects, such as number of passengers, number of initially sick passengers, seating locations of passengers, and baseline health of each passenger. The computational tool is then exercised in demonstration for assessing risk mitigation of intervention strategies, such as passenger-driven cleaning of seating environments and elimination of middle seating.


2020 ◽  
Vol 4;23 (7;4) ◽  
pp. E335-E342
Author(s):  
Jason Friedrich

Background: More patients with cardiac implantable electrical devices (CIEDs) are presenting to spine and pain practices for radiofrequency ablation (RFA) procedures for chronic pain. Although the potential for electromagnetic interference (EMI) affecting CIED function is known with RFA procedures, available guidelines do not specifically address CIED management for percutaneous RFA for zygapophyseal (z-joint) joint pain, and thus physician practice may vary. Objectives: To better understand current practices of physicians who perform RFA for chronic z-joint pain with respect to management of CIEDs. Perioperative CIED management guidelines are also reviewed to specifically address risk mitigation strategies for potential EMI created by ambulatory percutaneous spine RFA procedures. Study Design: Web-based provider survey and narrative review. Setting: Multispecialty pain clinic, academic medical center. Methods: A web-based survey was created using Research Electronic Data Capture (REDCap). A survey link was provided via e-mail to active members of the Spine Intervention Society (SIS), American Society of Regional Anesthesia and Pain Medicine, as well as distributed freely to community Pain Physicians and any receptive academic departments of PM&R or Anesthesiology. The narrative review summarizes pertinent case series, review articles, a SIS recommendation statement, and multi-specialty peri-operative guidelines as they relate specifically to spine RFA procedures. Results: A total of 197 clinicians participated in the survey from diverse clinical backgrounds, including anesthesiology, physical medicine and rehabilitation, radiology, neurosurgery, and neurology, with 81% reporting fellowship training. Survey responses indicate wide variability in provider management of CIEDs before, during, and after RFA for z-joint pain. Respondents indicated they would like more specific guidelines to aid in management and decision-making around CIEDs and spine RFA procedures. Literature review yielded several practice guidelines related to perioperative management of CIEDs, but no specific guideline for percutaneous spine RFA procedures. However, combining the risk mitigation strategies provided in these guidelines, with interventional pain physician clinical experience allows for reasonable management recommendations to aid in decision-making. Limitations: Although this manuscript can serve as a review of CIEDs and aid in management decisions in patients with CIEDs, it is not a clinical practice guideline. Conclusions: Practice patterns vary regarding CIED management in ambulatory spine RFA procedures. CIED presence is not a contraindication for spine RFA but does increase the complexity of a spine RFA procedure and necessitates some added precautions. Key words: Radiofrequency ablation, neurotomy, cardiac implantable electrical device, zygapophyseal joint, spondylosis, neck pain, low back pain, chronic pain


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Christopher Nguyen ◽  
Kevin T. Kline ◽  
Shehzad Merwat ◽  
Sheharyar Merwat ◽  
Gurinder Luthra ◽  
...  

Abstract Background The COVID-19 pandemic has led to disruptions in elective and outpatient procedures. Guidance from the Centers for Medicare and Medicaid Services provided a framework for gradual reopening of outpatient clinical operations. As the infrastructure to restart endoscopy has been more clearly described, patient concerns regarding viral transmission during the procedure have been identified. Moreover, the efficacy of the measures in preventing transmission have not been clearly delineated. Methods We identified patients with pandemic-related procedure cancellations from 3/16/2020 to 4/20/2020. Patients were stratified into tier groups (1–4) by urgency. Procedures were performed using our hospital risk mitigation strategies to minimize transmission risk. Patients who subsequently developed symptoms or tested for COVID-19 were recorded. Results Among patients requiring emergent procedures, 57.14% could be scheduled at their originally intended interval. COVID-19 concerns represented the most common rescheduling barrier. No patients who underwent post-procedure testing were positive for COVID-19. No cases of endoscopy staff transmission were identified. Conclusions Non-COVID-19 related patient care during the pandemic is a challenging process that evolved with the spread of infection, requiring dynamic monitoring and protocol optimization. We describe our successful model for reopening endoscopy suites using a tier-based system for safe reintroduction of elective procedures while minimizing transmission to patients and staff. Important barriers included financial and transmission concerns that need to be addressed to enable the return to pre-pandemic utilization of elective endoscopic procedures.


Sign in / Sign up

Export Citation Format

Share Document