Effects of steel fibre and silica fume on impact behaviour of recycled aggregate concrete

2016 ◽  
Vol 6 (1) ◽  
pp. 54-68 ◽  
Author(s):  
Ebrahim Nazarimofrad ◽  
Faiz Uddin Ahmed Shaikh ◽  
Mahmoud Nili
2019 ◽  
Vol 6 (12) ◽  
pp. 190813
Author(s):  
Bin Lei ◽  
Huajian Liu ◽  
Zhimin Yao ◽  
Zhuo Tang

At present, many modification methods have been proposed to improve the performance of recycled aggregate concrete (RAC). In this study, tests on the compressive strength and damping properties of modified RAC with the addition of different proportions of recycled coarse aggregate (RCA) (0, 50, 100%), rubber powder (10, 15, 20%), steel fibre (5, 7.5, 10%) and fly ash (15, 20, 5%) are carried out. To elucidate the effect of the modification method on the interfacial transition zone (ITZ) performance of RAC, model ITZ specimens are used for push-out tests. The results show that when the replacement rate of RCA reaches 100%, the loss factor of the RAC is 6.0% higher than that of natural aggregate concrete; however, the compressive strength of the RAC decreases by 22.6%. With the addition of 20% rubber powder, the damping capacity of the modified RAC increases by 213.7%, while the compressive strength of the modified RAC decreases by 47.5%. However, with the addition of steel fibre and fly ash, both the compressive strength and loss factor of the RAC specimens increase. With a steel fibre content of 10 wt%, the compressive strength and loss factor of the RAC increase by 21.9% and 15.2%, respectively. With a fly ash content of 25 wt%, the compressive strength and loss factor of the RAC increase by 8.6% and 6.9%, respectively. This demonstrates that steel fibre and fly ash are effective in improving both the damping properties and compressive strength of RAC, and steel fibre is more effective than fly ash. Two methods were used for modification of the RAC: reinforcing the RCA through impregnation with a 0.5% polyvinyl alcohol (PVA) emulsion and nano-SiO 2 solution, and strengthening the RAC integrally through the addition of fly ash as an admixture. Both of these techniques can improve the ITZ bond strength between the RAC and new mortar. Replacing 10% of the cement with fly ash in the new mortar is shown to be the best method to improve the ITZ strength.


2021 ◽  
Vol 10 (1) ◽  
pp. 819-838
Author(s):  
Tang Yunchao ◽  
Chen Zheng ◽  
Feng Wanhui ◽  
Nong Yumei ◽  
Li Cong ◽  
...  

Abstract Recycled aggregate concrete (RAC) is an environmentally friendly material. However, owing to inherent characteristics of the recycled aggregate (RA), it is difficult to promote and apply it in structural engineering. Silica fume (SF) and nano-silica (NS) have different characteristics as additives for RAC. It has been proven that adding SF only enhances the strength of RAC at a later stage, and NS can improve the early strength of RAC owing to its high pozzolanic activity. In this study, to further improve the properties of RAC, two types of additives were combined into RAC, which was named SF-NS-modified RAC (SSRAC). Compression and split tensile tests were conducted to analyze the mechanical properties of SSRAC at different curing ages. The results indicated that the combined addition of NS and SF improved the performance of RAC at early and later curing ages. Scanning electron microscopy and X-ray diffraction analyses were performed to explore the NS and SF mechanism. The results indicated that SF and NS in SSRAC had a good pozzolanic effect and underwent a secondary hydration reaction with calcium hydroxide to increase the production of calcium silicate hydrate, resulting in an increase in the properties of the interface transition zone. Finally, 6% SF and 2 or 3% NS are recommended as supplementary cementitious materials for RAC.


Sign in / Sign up

Export Citation Format

Share Document