scholarly journals Exosomes loaded with programmed death ligand-1 promote tumor growth by immunosuppression in osteosarcoma

Bioengineered ◽  
2021 ◽  
Author(s):  
Lei Zhang ◽  
Lili Xue ◽  
Yanjuan Wu ◽  
Qilong Wu ◽  
Hongwei Ren ◽  
...  
Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Man-Chin Chen ◽  
Christian Ronquillo Pangilinan ◽  
Che-Hsin Lee

Immunotherapy is becoming a popular treatment modality in combat against cancer, one of the world’s leading health problems. While tumor cells influence host immunity via expressing immune inhibitory signaling proteins, some bacteria possess immunomodulatory activities that counter the symptoms of tumors. The accumulation of Salmonella in tumor sites influences tumor protein expression, resulting in T cell infiltration. However, the molecular mechanism by which Salmonella activates T cells remains elusive. Many tumors have been reported to have high expressions of programmed death-ligand 1 (PD-L1), which is an important immune checkpoint molecule involved in tumor immune escape. In this study, Salmonella reduced the expression of PD-L1 in tumor cells. The expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and the phospho-p70 ribosomal s6 kinase (P-p70s6K) pathway were revealed to be involved in the Salmonella-mediated downregulation of PD-L1. In a tumor-T cell coculture system, Salmonella increased T cell number and reduced T cell apoptosis. Systemic administration of Salmonella reduced the expressions of PD-L-1 in tumor-bearing mice. In addition, tumor growth was significantly inhibited along with an enhanced T cell infiltration following Salmonella treatment. These findings suggest that Salmonella acts upon the immune checkpoint, primarily PD-L1, to incapacitate protumor effects and thereby inhibit tumor growth.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yafeng Wan ◽  
Ke Ge ◽  
Weijiang Zhou ◽  
Jun Lu ◽  
Changku Jia ◽  
...  

Abstract Strategies to sensitize hepatocellular carcinomas (HCC) to programmed death-1 (PD1)/programmed death-ligand 1 (PD-L1) inhibitor therapies are important in improving the survival of HCC patients. The aim of the study was to characterize C-X-C chemokine receptor 2 (Cxcr2) as a therapeutic target in HCC and evaluate the effects of Cxcr2 suppression in sensitizing HCC to PD1/PD-L1 inhibitor therapies. To this end, we constructed a Cxcr2-knockout HCC cell line (Hepa1-6 KO) using the CRISPR-Cas9 approach and assessed the tumor growth rate and survival of mice after subcutaneously inoculating Hepa1-6 KO cells in mice. We show that Cxcr2 knockdown does not dramatically inhibit tumor growth and improve mouse survival. In tumor xenografts, the proportion of T cells is not affected but the ratio of M1/M2 macrophage is greatly increased. Cxcr2 knockdown does not alter cell viability but macrophages co-cultured with Hepa1-6 KO cells are shifted to M1 phenotypes compared to WT cells. Hepa-1-6 KO cells exhibit lower levels of PD-L1 expression. c-Myc is suppressed in Hepa1-6 KO cells, which contributes to PD-L1 downregulation. Knockdown of Cxcr2 decreases PD-L1 levels and consequently promotes the shift of macrophages to the M1 phenotype, which is mediated by downregulating c-Myc. In summary, Cxcr2 is a potential target for suppressing immune escape in HCC.


2021 ◽  
Author(s):  
Qiangda Chen ◽  
Hanlin Yin ◽  
Ning Pu ◽  
Jicheng Zhang ◽  
Guochao Zhao ◽  
...  

Author(s):  
Steven Banik ◽  
Kayvon Pedram ◽  
Simon Wisnovsky ◽  
Nicholas Riley ◽  
Carolyn Bertozzi

<p>Targeted protein degradation is a powerful strategy to address the canonically undruggable proteome. However, current technologies are limited to targets with cytosolically-accessible and ligandable domains. Here, we designed and synthesized conjugates capable of binding both a cell surface lysosome targeting receptor and the extracellular domain of a target protein. These lysosome targeting chimeras (LYTACs) consist of an antibody fused to agonist glycopeptide ligands for the cation-independent mannose-6-phosphate receptor (CI-M6PR). LYTACs enabled a CRISPRi knockdown screen revealing the biochemical pathway for CI-M6PR-mediated cargo internalization. We demonstrated that LYTACs mediate efficient degradation of Apolipoprotein-E4, epidermal growth factor receptor (EGFR), CD71, and programmed death-ligand 1 (PD-L1). LYTACs represent a modular strategy for directing secreted and membrane proteins for degradation in the context of both basic research and therapy. <b></b></p>


Sign in / Sign up

Export Citation Format

Share Document