Agroecological practices of legume residue management and crop diversification for improved smallholder food security, dietary diversity and sustainable land use in Malawi

2020 ◽  
Vol 45 (2) ◽  
pp. 197-224
Author(s):  
Sidney Madsen ◽  
R. Bezner Kerr ◽  
L. Shumba ◽  
L. Dakishoni
2018 ◽  
Vol 10 (11) ◽  
pp. 4042 ◽  
Author(s):  
Wei Wei ◽  
Yuanjun Zhu ◽  
Hao Li ◽  
Kebin Zhang ◽  
Baitian Wang ◽  
...  

The abandonment and cultivation of croplands in the Eurasian Steppe has become the focus of global and regional food security and agricultural policy-making. A large area of cropland in some post-Soviet countries has proven to be abandoned with the disintegration of the Soviet Union; however, it is unclear as to whether Kazakhstan also experienced a similar change as one of the main food providers for the former Soviet Union. In this study, we used the annual land cover dataset (1992–2015) from the European Space Agency, Climate Change Initiative (ESA-CCI) to detect spatio-temporal characteristics of rainfed and irrigated cropland changes in Kazakhstan. The Mann–Kendall test and regime shift analysis showed that rainfed and irrigated cropland at national level had a significant increasing trend with a significant rising up to 1999 and stagnation during 2000–2015, which was further confirmed with analysis at 14 regions. The greatest contributor to rainfed and irrigated croplands was steppes, followed by shrinkage of water bodies since 2005 to a great extent, rapid urbanization process resulted in losses of a part of irrigated oases. The trend surface analysis indicated that reorganized stable pattern characterized by rainfed cropland in north and irrigated cropland in south was driven by the strategy of the gradual agricultural development of oases. The nonexistence of cycle between the abandonment and recultivation proved that newly-gained cropland from steppe may be less degraded and more productive for sustainable land use in Kazakhstan. In conclusion, this study can provide strong evidence for sustainable land use and a basis for food security policy-making in Kazakhstan, and even all of the Central Asian countries in the future.


2020 ◽  
Vol 12 (5) ◽  
pp. 1835
Author(s):  
Anja Schmitz ◽  
Bettina Tonn ◽  
Ann-Kathrin Schöppner ◽  
Johannes Isselstein

Engaging farmers as citizen scientists may be a cost-efficient way to answering applied research questions aimed at more sustainable land use. We used a citizen science approach with German horse farmers with a dual goal. Firstly, we tested the practicability of this approach for answering ‘real-life’ questions in variable agricultural land-use systems. Secondly, we were interested in the knowledge it can provide about locomotion of horses on pasture and the management factors influencing this behaviour. Out of 165 volunteers, we selected 40 participants to record locomotion of two horses on pasture and provide information on their horse husbandry and pasture management. We obtained complete records for three recording days per horse from 28 participants, resulting in a dataset on more individual horses than any other Global Positioning System study published in the last 30 years. Time spent walking was greatest for horses kept in box-stall stables, and walking distance decreased with increasing grazing time. This suggests that restrictions in pasture access may increase stress on grass swards through running and trampling, severely challenging sustainable pasture management. Our study, involving simple technology, clear instructions and rigorous quality assessment, demonstrates the potential of citizen science actively involving land managers in agricultural research.


2021 ◽  
pp. 205301962110075
Author(s):  
Ilan Stavi ◽  
Joana Roque de Pinho ◽  
Anastasia K Paschalidou ◽  
Susana B Adamo ◽  
Kathleen Galvin ◽  
...  

During the last decades, pastoralist, and agropastoralist populations of the world’s drylands have become exceedingly vulnerable to regional and global changes. Specifically, exacerbated stressors imposed on these populations have adversely affected their food security status, causing humanitarian emergencies and catastrophes. Of these stressors, climate variability and change, land-use and management practices, and dynamics of human demography are of a special importance. These factors affect all four pillars of food security, namely, food availability, access to food, food utilization, and food stability. The objective of this study was to critically review relevant literature to assess the complex web of interrelations and feedbacks that affect these factors. The increasing pressures on the world’s drylands necessitate a comprehensive analysis to advise policy makers regarding the complexity and linkages among factors, and to improve global action. The acquired insights may be the basis for alleviating food insecurity of vulnerable dryland populations.


SAGE Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 215824402097999
Author(s):  
Aloyce R. Kaliba ◽  
Anne G. Gongwe ◽  
Kizito Mazvimavi ◽  
Ashagre Yigletu

In this study, we use double-robust estimators (i.e., inverse probability weighting and inverse probability weighting with regression adjustment) to quantify the effect of adopting climate-adaptive improved sorghum varieties on household and women dietary diversity scores in Tanzania. The two indicators, respectively, measure access to broader food groups and micronutrient and macronutrient availability among children and women of reproductive age. The selection of sample households was through a multistage sampling technique, and the population was all households in the sorghum-producing regions of Central, Northern, and Northwestern Tanzania. Before data collection, enumerators took part in a 1-week training workshop and later collected data from 822 respondents using a structured questionnaire. The main results from the study show that the adoption of improved sorghum seeds has a positive effect on both household and women dietary diversity scores. Access to quality food groups improves nutritional status, food security adequacy, and general welfare of small-scale farmers in developing countries. Agricultural projects that enhance access to improved seeds are, therefore, likely to generate a positive and sustainable effect on food security and poverty alleviation in sorghum-producing regions of Tanzania.


Author(s):  
Luoman Pu ◽  
Jiuchun Yang ◽  
Lingxue Yu ◽  
Changsheng Xiong ◽  
Fengqin Yan ◽  
...  

Crop potential yields in cropland are the essential reflection of the utilization of cropland resources. The changes of the quantity, quality, and spatial distribution of cropland will directly affect the crop potential yields, so it is very crucial to simulate future cropland distribution and predict crop potential yields to ensure the future food security. In the present study, the Cellular Automata (CA)-Markov model was employed to simulate land-use changes in Northeast China during 2015–2050. Then, the Global Agro-ecological Zones (GAEZ) model was used to predict maize potential yields in Northeast China in 2050, and the spatio-temporal changes of maize potential yields during 2015–2050 were explored. The results were the following. (1) The woodland and grassland decreased by 5.13 million ha and 1.74 million ha respectively in Northeast China from 2015 to 2050, which were mainly converted into unused land. Most of the dryland was converted to paddy field and built-up land. (2) In 2050, the total maize potential production and average potential yield in Northeast China were 218.09 million tonnes and 6880.59 kg/ha. Thirteen prefecture-level cities had maize potential production of more than 7 million tonnes, and 11 cities had maize potential yields of more than 8000 kg/ha. (3) During 2015–2050, the total maize potential production and average yield decreased by around 23 million tonnes and 700 kg/ha in Northeast China, respectively. (4) The maize potential production increased in 15 cities located in the plain areas over the 35 years. The potential yields increased in only nine cities, which were mainly located in the Sanjiang Plain and the southeastern regions. The results highlight the importance of coping with the future land-use changes actively, maintaining the balance of farmland occupation and compensation, improving the cropland quality, and ensuring food security in Northeast China.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 249
Author(s):  
Quanfeng Li ◽  
Zhe Dong ◽  
Guoming Du ◽  
Aizheng Yang

The intensified use of cultivated land is essential for optimizing crop planting practices and protecting food security. This study employed a telecoupling framework to evaluate the cultivated land use intensification rates in typical Chinese villages (village cultivated land use intensifications—VCLUIs). The pressure–state–response (PSR) model organizes the VCLUI indexes including the intensity press, output state, and structural response of cultivated land use. Empirical analysis conducted in Baiquan County, China, indicating that the cultivated land use intensification levels of the whole county were low. However, the intensifications of villages influenced by physical and geographic locations and socioeconomic development levels varied significantly. This paper also found that variations in the VCLUIs were mainly dependent on new labor-driven social subsystem differences. Thus, the expanding per capita farmland scales and increasing numbers of new agricultural business entities were critical in improving the VCLUI. Overall, the theoretical framework proposed in this study was demonstrated to be effective in analyzing interactions among the natural, social, and economic subsystems of the VCLUI. The findings obtained in this study potentially have important implications for future regional food security, natural stability, and agricultural land use sustainability.


Sign in / Sign up

Export Citation Format

Share Document