In silico Analysis of Stigmasterol from Saraca asoca as a Potential Therapeutic Drug Against Alzheimer’s Disease

2021 ◽  
Vol 11 (5-6) ◽  
pp. 516-529
Author(s):  
Rijo Rajeev ◽  
Shreedhanya D Marathe ◽  
Vidya Niranjan ◽  
Bhavya Sharma ◽  
Suma Sarojini
2020 ◽  
Vol 127 ◽  
pp. 124-135
Author(s):  
George D. Vavougios ◽  
Christiane Nday ◽  
Sygliti-Henrietta Pelidou ◽  
Sotirios G. Zarogiannis ◽  
Konstantinos I. Gourgoulianis ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 983
Author(s):  
Agnese Gugliandolo ◽  
Luigi Chiricosta ◽  
Virginia Boccardi ◽  
Patrizia Mecocci ◽  
Placido Bramanti ◽  
...  

MicroRNAs (miRNAs) are small RNAs involved in the post-transcriptional regulation of their target genes, causing a decrease in protein translation from the mRNA. Different miRNAs are found in the nervous system, where they are involved in its physiological functions, but altered miRNAs expression was also reported in neurodegenerative disorders, including Alzheimer’s disease (AD). AD is characterized by memory loss, cognitive function abnormalities, and various neuropsychiatric disturbances. AD hallmarks are amyloid β (Aβ) aggregates, called senile plaques, and neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein. In this study, we performed an in silico analysis to evaluate altered patterns of miRNAs expression in the brains of AD patients compared to healthy subjects. We found 12 miRNAs that were differentially expressed in AD compared to healthy individuals. These miRNAs have target genes involved in AD pathogenesis. In particular, some miRNAs influence Aβ production, having as target secretase and amyloid precursor protein (APP). Some miRNAs were reported to be involved in nervous system functions, and their alteration can cause neuronal dysfunction.


Author(s):  
Priyanka Sarkar ◽  
Premkumar Jayaraj ◽  
Ketaki Patwardhan ◽  
Samiksha Yeole ◽  
Sourajit Das ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document