scholarly journals Embedding responsible innovation within synthetic biology research and innovation: insights from a UK multi-disciplinary research centre

2020 ◽  
Vol 7 (3) ◽  
pp. 384-409 ◽  
Author(s):  
Mario Pansera ◽  
Richard Owen ◽  
Darian Meacham ◽  
Vivienne Kuh
2016 ◽  
Vol 44 (3) ◽  
pp. 675-677 ◽  
Author(s):  
Pablo Carbonell ◽  
Andrew Currin ◽  
Mark Dunstan ◽  
Donal Fellows ◽  
Adrian Jervis ◽  
...  

The Manchester Synthetic Biology Research Centre (SYNBIOCHEM) is a foundry for the biosynthesis and sustainable production of fine and speciality chemicals. The Centre's integrated technology platforms provide a unique capability to facilitate predictable engineering of microbial bio-factories for chemicals production. An overview of these capabilities is described.


2016 ◽  
Vol 44 (3) ◽  
pp. 689-691 ◽  
Author(s):  
Kathleen R. Sedgley ◽  
Paul R. Race ◽  
Derek N. Woolfson

BrisSynBio is the Bristol-based Biotechnology and Biological Sciences Research Council (BBSRC)/Engineering and Physical Sciences Research Council (EPSRC)-funded Synthetic Biology Research Centre. It is one of six such Centres in the U.K. BrisSynBio's emphasis is on rational and predictive bimolecular modelling, design and engineering in the context of synthetic biology. It trains the next generation of synthetic biologists in these approaches, to facilitate translation of fundamental synthetic biology research to industry and the clinic, and to do this within an innovative and responsible research framework.


2016 ◽  
Vol 44 (3) ◽  
pp. 684-686
Author(s):  
Alan Burbidge ◽  
Nigel P. Minton

Synthetic Biology Research Centre (SBRC)-Nottingham (www.sbrc-nottingham.ac.uk) was one of the first three U.K. university-based SBRCs to be funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and Engineering and Physical Sciences Research Council (EPSRC) as part of the recommendations made in the U.K.'s Synthetic Biology Roadmap. It was established in 2014 and builds on the pioneering work of the Clostridia Research Group (CRG) who have previously developed a range of gene tools for the modification of clostridial genomes. The SBRC is primarily focussed on the conversion of single carbon waste gases into platform chemicals with a particular emphasis on the use of the aerobic chassis Cupriavidus necator.


2018 ◽  
Author(s):  
Philip Shapira ◽  
Seokbeom Kwon

A profile of synthetic biology research and innovation is presented using data on publications and patents worldwide and for the UK and selected benchmark countries. The search approach used to identify synthetic biology publications identifies a core set of synthetic biology papers, extracts and refines keywords from these core records, searches for additional papers using those keywords, and supplements with articles published in dedicated synthetic biology journals and curated synthetic biology special collections. For the period from 2000 through to mid-July 2018, 11,369 synthetic biology publication records are identified worldwide. For patents, the search approach uses the same keywords as for publications then identifies further patents using a citation-tree search algorithm. The search covered patents by priority year from 2003 to early August 2018. Following geographical matching, 8,460 synthetic biology basic patent records were identified worldwide. Using this data, analyses of publications are presented which look at the growth of synthetic biology outputs, top countries and leading organizations, international co-authoring, leading subject categories, citations, synthetic biology on the map of science, and funding sponsorship. For patents, the analysis examines growth in patenting, national variations in publications compared with patenting, leading patent assignees, and the positioning of synthetic biology on a visualized map of patents.


2016 ◽  
Vol 1 (4) ◽  
pp. 271-275 ◽  
Author(s):  
Le Feuvre RA ◽  
Carbonell P ◽  
Currin A ◽  
Dunstan M ◽  
Fellows D ◽  
...  

2016 ◽  
Vol 60 (4) ◽  
pp. 371-379 ◽  
Author(s):  
Daniel Gregorowius ◽  
Anna Deplazes-Zemp

Synthetic biology is an emerging field at the interface between biology and engineering, which has generated many expectations for beneficial biomedical and biotechnological applications. At the same time, however, it has also raised concerns about risks or the aim of producing new forms of living organisms. Researchers from different disciplines as well as policymakers and the general public have expressed the need for a form of technology assessment that not only deals with technical aspects, but also includes societal and ethical issues. A recent and very influential model of technology assessment that tries to implement these aims is known as RRI (Responsible Research and Innovation). In this paper, we introduce this model and its historical precursor strategies. Based on the societal and ethical issues which are presented in the current literature, we discuss challenges and opportunities of applying the RRI model for the assessment of synthetic biology.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Tomáš Řezník ◽  
Milan Konečný ◽  
Karel Charvát

<p><strong>Abstract.</strong> Land degradation has increasingly been recognised as a serious environmental problem throughout the whole world. Six major threats may be identified that place soil fertility at risk, namely, soil erosion, loss of organic matter, soil biodiversity, soil compaction, soil salinity, and soil pollution. Several of those risks could be effectively identified, analysed, visualised and consequently limited by approaches originating from the geospatial domain.</p><p>The China – European Union research and innovation project “SIEUSOIL” (SIno-EU Soil Observatory for Intelligent Land Use Management), funded between 2019 and 2022, as well as the European Big Data flagship research and innovation project “DataBio” (Data-Driven Bioeconomy), funded between 2017 and 2019, aim at the above mentioned challenges of land degradation from innovative geospatial perspectives.</p><p>Such innovative approaches include local geological, geomorphological, climate, yield maps as well as global soil maps provided commonly by the European Commission (Directorate General Joint Research Centre) and the Chinese Academy of Sciences. Among the data inputs there are farm machinery tracking and interpreted satellite images. The second level of activities consists of selected standards and specification of ontologies for the integration and sharing of soil related data, facilitating their reuse and understanding. The resulting ontology and other selected models provide the basis for the integration, publication, and querying of the source datasets using Linked data as a federated layer. Besides offering an integrated view of the datasets, this layer also enables new insights through the discovery of links.</p><p>From the cartographic perspective, several visualization techniques are deployed; from static maps to interactive visualisations. The main focus of visualization techniques is therefore given to the interactivity through utilizing the concept of Multiple Coordinated Views (also known as visual analytics tools) and dynamic queries to emphasize the impact of changes of various phenomena in space and time. For instance, see Figure 1 on monitoring of machinery fleet movement and especially its spatiotemporal changes that can bring new insights into the consequences of human decisions from many areas. Economic reasons are related to economic evidence for a farmer, including fuel consumption, efficiency of trajectory, etc. to revenue authority or subsidies management. On the other hand, ecologic motivations aim to decrease of environmental burden caused e.g. by high CO<sub>2</sub> emissions due to a lack of movement optimisation, water pollution by nitrogen due to excessive fertilisation, etc.</p><p>The outcomes of the above mentioned research are intended as a feedback to (inter)national policies within the environmental domain including the Montreal Protocol (on substances that deplete the Ozone Layer), European Common Agricultural Policy, Nitrates Directive, Air Quality Framework Directive, Water Framework Directive, the Chinese Water Pollution Prevention Law, etc.</p>


2009 ◽  
Vol 187 (5) ◽  
pp. 589-596 ◽  
Author(s):  
Karmella A. Haynes ◽  
Pamela A. Silver

Synthetic biology aims to engineer novel cellular functions by assembling well-characterized molecular parts (i.e., nucleic acids and proteins) into biological “devices” that exhibit predictable behavior. Recently, efforts in eukaryotic synthetic biology have sprung from foundational work in bacteria. Designing synthetic circuits to operate reliably in the context of differentiating and morphologically complex cells presents unique challenges and opportunities for progress in the field. This review surveys recent advances in eukaryotic synthetic biology and describes how synthetic systems can be linked to natural cellular processes in order to manipulate cell behavior and to foster new discoveries in cell biology research.


Sign in / Sign up

Export Citation Format

Share Document