Hybrid Lattice Boltzmann Simulation of Three-Dimensional Natural Convection

Author(s):  
Alexander Nee
2007 ◽  
Vol 21 (01) ◽  
pp. 87-96 ◽  
Author(s):  
C. S. NOR AZWADI ◽  
T. TANAHASHI

In this paper, a three-dimensional (3D) thermal lattice Boltzmann model is proposed to simulate 3D incompressible thermal flow problem. Our model is based on the double-distribution function approach. We found that a new and simple lattice type of eight-velocity model for the internal energy density distribution function can be developed, where the viscous and compressive heating effects are negligible. Numerical results of 3D natural convection flow in a cubic cavity are presented.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
L. El Moutaouakil ◽  
Z. Zrikem ◽  
A. Abdelbaki

Laminar natural convection in a water filled square enclosure containing at its center a horizontal hexagonal cylinder is studied by the lattice Boltzmann method. The hexagonal cylinder is heated while the walls of the cavity are maintained at the same cold temperature. Two orientations are treated, corresponding to two opposite sides of the hexagonal cross-section which are horizontal (case I) or vertical (case II). For each case, the results are presented in terms of streamlines, isotherms, local and average convective heat transfers as a function of the dimensionless size of the hexagonal cylinder cross-section (0.1≤B≤0.4), and the Rayleigh number (103≤Ra≤106).


2021 ◽  
Vol 321 ◽  
pp. 01014
Author(s):  
Makoto Sugimoto ◽  
Tatsuya Miyazaki ◽  
Zelin Li ◽  
Masayuki Kaneda ◽  
Kazuhiko Suga

Stator coils of automobiles in operation generate heat and are cooled by a coolant poured from above. Since the behavior characteristic of the coolant poured on the coils is not clarified yet due to its complexity, the three-dimensional two-phase flow simulation is conducted. In this study, as a steppingstone to the simulation of the liquid falling on the actual coils, the coils are modelled with horizontal rectangular pillar arrays whose governing parameters can be easily changed. The two-phase flows are simulated using the lattice Boltzmann method and the phase-field model, and the effects of the governing parameters, such as the physical properties of the cooling liquid, the wettability, and the gap between the pillars, on the wetting area are investigated. The results show that the oil tends to spread across the pillars because of its high viscosity. Moreover, the liquid spreads quickly when the contact angle is small. In the case that the pillars are stacked, the wetting area of the inner pillars is larger than that of the exposed pillars.


Author(s):  
Minglei Shan ◽  
Yu Yang ◽  
Hao Peng ◽  
Qingbang Han ◽  
Changping Zhu

Understanding the dynamic characteristic of the cavitation bubble near a solid wall is a fundamental issue for the bubble collapse application and prevention. In the present work, an improved three-dimensional multi-relaxation-time pseudopotential lattice Boltzmann model is adopted to investigate the cavitation bubble collapse near the solid wall. With respect to thermodynamic consistency, Laplace law verification, the three-dimensional pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. By the theoretical analysis, it is proved that the model can be regarded as a solver of the Rayleigh–Plesset equation, and confirmed by comparing the results of the lattice Boltzmann simulation and the Rayleigh–Plesset equation calculation for the case of cavitation bubble collapse in the infinite medium field. The bubble collapse near the solid wall is modeled using the improved pseudopotential multi-relaxation-time lattice Boltzmann model. We find the lattice Boltzmann simulation and the experimental results have the same dynamic process by comparing the bubble profiles evolution. Form the pressure field and the velocity field evolution it is found that the tapered higher pressure region formed near the top of the bubble is a crucial driving force inducing the bubble collapse. This exploratory research demonstrates that the lattice Boltzmann method is an alternative tool for the study of the interaction between collapsing cavitation bubble and matter.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahyar Ashouri ◽  
Mohammad Mehdi Zarei ◽  
Ali Moosavi

Purpose The purpose of this paper is to investigate the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal annulus using three-dimensional lattice Boltzmann flux solver. Design/methodology/approach Three-dimensional lattice Boltzmann flux solver is used in the present study for simulating conjugate heat transfer within an annulus. D3Q15 and D3Q7 models are used to solve the fluid flow and temperature field, respectively. The finite volume method is used to discretize mass, momentum and energy equations. The Chapman–Enskog expansion analysis is used to establish the connection between the lattice Boltzmann equation local solution and macroscopic fluxes. To improve the accuracy of the lattice Boltzmann method for curved boundaries, lattice Boltzmann equation local solution at each cell interface is considered to be independent of each other. Findings It is found that the maximum heat transfer rate occurs at low fin spacing especially by increasing the fin height and decreasing the internal-cylindrical distance. The effect of inner cylinder eccentricity is not much considerable (up to 5.2% enhancement) while the impact of fin eccentricity is more remarkable. Negative fin eccentricity further enhances the heat transfer rate compared to a positive fin eccentricity and the maximum heat transfer enhancement of 91.7% is obtained. The influence of using perforated fins is more considerable at low fin spacing although some heat transfer enhancements are observed at higher fin spacing. Originality/value The originality of this paper is to study three-dimensional natural convection in a finned-horizontal annulus using three-dimensional lattice Boltzmann flux solver, as well as to apply symmetry and periodic boundary conditions and to analyze the effect of eccentric annular fins (for the first time for air) and perforated annular fins (for the first time so far) on the heat transfer rate.


Sign in / Sign up

Export Citation Format

Share Document