scholarly journals The plastid genome sequence of the invasive plant common Ragweed (Ambrosia artemisiifolia, Asteraceae)

2017 ◽  
Vol 2 (2) ◽  
pp. 753-754 ◽  
Author(s):  
Ali Amiryousefi ◽  
Jaakko Hyvönen ◽  
Péter Poczai
2015 ◽  
Vol 12 (21) ◽  
pp. 17595-17641 ◽  
Author(s):  
L. Liu ◽  
F. Solmon ◽  
R. Vautard ◽  
L. Hamaoui-Laguel ◽  
Cs. Zs. Torma ◽  
...  

Abstract. Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In the online model environment where climate is integrated with dispersion and vegetation production, pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000–2010. To reduce the large uncertainties notably due to ragweed density distribution on pollen emission, a calibration based on airborne pollen observations is used. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger. From these simulations health risks associated common ragweed pollen spread are then evaluated through calculation of exposure time above health-relevant threshold levels. The total risk area with concentration above 5 grains m−3 takes up 29.5 % of domain. The longest exposure time occurs on Pannonian Plain, where the number of days per year with the daily concentration above 20 grains m−3 exceeds 30.


2021 ◽  
Author(s):  
Zhenya Tian ◽  
Chao Ma ◽  
Chenchen Zhao ◽  
Yan Zhang ◽  
Xuyuan Gao ◽  
...  

AbstractTo predict and mitigate the effects of climate change on communities and ecosystems, the joint effects of extreme climatic events on species interactions need to be understood. Using the common ragweed (Ambrosia artemisiifolia L.)—leaf beetle (Ophraella communa) system, we investigated the effects of heat wave and elevated CO2 on common ragweed growth, secondary metabolism, and the consequent impacts on the beetle. The results showed that elevated CO2 and heat wave facilitated A. Artemisiifolia growth; further, A. artemisiifolia accumulated large amounts of defensive secondary metabolites. Being fed on A. artemisiifolia grown under elevated CO2 and heat wave conditions resulted in the poor performance of O. communa (high mortality, long development period, and low reproduction). Overall, under elevated CO2, heat wave improved the defensive ability of A. artemisiifolia against herbivores. This implies that heat wave event will relieve harm of A. artemisiifolia to human under elevated CO2. On the other hand, super adaptability to climatic changes may aggravate invasive plant distribution, posing a challenge to the control of invasive plants in the future.


2021 ◽  
Vol 6 (2) ◽  
pp. 320-322
Author(s):  
Won-Bum Cho ◽  
Eun-Kyeong Han ◽  
In-Su Choi ◽  
Myounghai Kwak ◽  
Jung-Hyun Kim ◽  
...  

2021 ◽  
Vol 6 (9) ◽  
pp. 2553-2555
Author(s):  
Eun-Kyeong Han ◽  
Gantsetseg Amarsanaa ◽  
Jung-Hyun Kim ◽  
Soonku So ◽  
In-Su Choi ◽  
...  

2021 ◽  
Vol 211 ◽  
pp. 111879
Author(s):  
Caixia Han ◽  
Hua Shao ◽  
Shixing Zhou ◽  
Yu Mei ◽  
Zhenrui Cheng ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0176197 ◽  
Author(s):  
Lucie Meyer ◽  
Romain Causse ◽  
Fanny Pernin ◽  
Romain Scalone ◽  
Géraldine Bailly ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ingvild Loubet ◽  
Laëtitia Caddoux ◽  
Séverine Fontaine ◽  
Séverine Michel ◽  
Fanny Pernin ◽  
...  

AbstractAmbrosia artemisiifolia L. (common ragweed) is a globally invasive, allergenic, troublesome arable weed. ALS-inhibiting herbicides are broadly used in Europe to control ragweed in agricultural fields. Recently, ineffective treatments were reported in France. Target site resistance (TSR), the only resistance mechanism described so far for ragweed, was sought using high-throughput genotyping-by-sequencing in 213 field populations randomly sampled based on ragweed presence. Additionally, non-target site resistance (NTSR) was sought and its prevalence compared with that of TSR in 43 additional field populations where ALS inhibitor failure was reported, using herbicide sensitivity bioassay coupled with ALS gene Sanger sequencing. Resistance was identified in 46 populations and multiple, independent resistance evolution demonstrated across France. We revealed an unsuspected diversity of ALS alleles underlying resistance (9 amino-acid substitutions involved in TSR detected across 24 populations). Remarkably, NTSR was ragweed major type of resistance to ALS inhibitors. NTSR was present in 70.5% of the resistant plants and 74.1% of the fields harbouring resistance. A variety of NTSR mechanisms endowing different resistance patterns evolved across populations. Our study provides novel data on ragweed resistance to herbicides, and emphasises that local resistance management is as important as mitigating gene flow from populations where resistance has arisen.


Author(s):  
A. S. Golubev ◽  
I. P. Borushko ◽  
V. I. Dolzhenko

The use of glyphosate (720-2880 g/h a.i.) and ammonium glufosinate herbicides (375-1500 g/h a.i.) to control of common ragweed (Ambrosia artemisiifolia L.) has been studied in trials (2013-2018) in the vineyards of Rkatsiteli, Liang and Cabernet Sauvignon in Abinsk district of Krasnodar region. Accounting of weeds was done by a quantitative method with counting the number of each weed species in each plot. Counts were performed before the treatment and in 15, 30 and 45 days after spraying. The effi cacy of herbicide was determined in relation to the untreated control and expressed as a percentage. The main evaluation criterion was the eff ectiveness of 100 % in one of the accounts or the average (for all counts) effi ciency of more than 90 %. The results showed that in 95 % of trials spraying of 1440 g/h of glyphosate 1440 g/h of glyphosate (a.i.) and higher ensured processing effi ciency exceeding 90 %. Herbicides such as Roundup, containing 360 g/l of isopropylamine salt, can be recommended for use to control of common ragweed in the application rate 4.0 l/ha. Destruction of all common ragweed observed when using not less than 600 g/h glufosinate ammonium. Thus, Herbicides such as Basta, containing 150 g/l of ammonium glufosinate, to control of common ragweed should be applied by fractional application vegetative weeds (2.5 l/h + 1.5 l/h).


Sign in / Sign up

Export Citation Format

Share Document