1D/3D Co(II)-based coordination polymers: protective effect on Alzheimer's disease by reducing Aβ accumulation and neurons apoptosis in mice

Author(s):  
Cong Chen ◽  
Bu-Fei Wang ◽  
Chao-Sheng Zeng ◽  
Min Chen ◽  
Lin Chen ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Nesrine S. El Sayed ◽  
Mamdooh H. Ghoneum

Background. Many neurodegenerative diseases such as Alzheimer’s disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. Objective. We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer’s disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. Methods. Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. Results. Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid β. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. Conclusions. Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.


2020 ◽  
Vol 295 (41) ◽  
pp. 14015-14024 ◽  
Author(s):  
Qin Cao ◽  
Daniel H. Anderson ◽  
Wilson Y. Liang ◽  
Joshua Chou ◽  
Lorena Saelices

The protective effect of transthyretin (TTR) on cellular toxicity of β-amyloid (Aβ) has been previously reported. TTR is a tetrameric carrier of thyroxine in blood and cerebrospinal fluid, the pathogenic aggregation of which causes systemic amyloidosis. However, studies have documented a protective effect of TTR against cellular toxicity of pathogenic Aβ, a protein associated with Alzheimer's disease. TTR binds Aβ, alters its aggregation, and inhibits its toxicity both in vitro and in vivo. In this study, we investigate whether the amyloidogenic ability of TTR and its antiamyloid inhibitory effect are associated. Using protein aggregation and cytotoxicity assays, we found that the dissociation of the TTR tetramer, required for its amyloid pathogenesis, is also necessary to prevent cellular toxicity from Aβ oligomers. These findings suggest that the Aβ-binding site of TTR may be hidden in its tetrameric form. Aided by computational docking and peptide screening, we identified a TTR segment that is capable of altering Aβ aggregation and toxicity, mimicking TTR cellular protection. EM, immune detection analysis, and assessment of aggregation and cytotoxicity revealed that the TTR segment inhibits Aβ oligomer formation and also promotes the formation of nontoxic, nonamyloid amorphous aggregates, which are more sensitive to protease digestion. Finally, this segment also inhibits seeding of Aβ catalyzed by Aβ fibrils extracted from the brain of an Alzheimer's patient. Together, these findings suggest that mimicking the inhibitory effect of TTR with peptide-based therapeutics represents an additional avenue to explore for the treatment of Alzheimer's disease.


2012 ◽  
Vol 45 (1) ◽  
pp. 8-12 ◽  
Author(s):  
B.V.P. de-Almada ◽  
L.D. de-Almeida ◽  
D. Camporez ◽  
M.V.D. de-Moraes ◽  
R.L. Morelato ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Chris B. Guure ◽  
Noor A. Ibrahim ◽  
Mohd B. Adam ◽  
Salmiah Md Said

The association of physical activity with dementia and its subtypes has remained controversial in the literature and has continued to be a subject of debate among researchers. A systematic review and meta-analysis of longitudinal studies on the relationship between physical activity and the risk of cognitive decline, all-cause dementia, Alzheimer’s disease, and vascular dementia among nondemented subjects are considered. A comprehensive literature search in all available databases was conducted up until April 2016. Well-defined inclusion and exclusion criteria were developed with focus on prospective studies ≥ 12 months. The overall sample from all studies is 117410 with the highest follow-up of 28 years. The analyses are performed with both Bayesian parametric and nonparametric models. Our analysis reveals a protective effect for high physical activity on all-cause dementia, odds ratio of 0.79, 95% CI (0.69, 0.88), a higher and better protective effect for Alzheimer’s disease, odds ratio of 0.62, 95% CI (0.49, 0.75), cognitive decline odds ratio of 0.67, 95% CI (0.55, 0.78), and a nonprotective effect for vascular dementia of 0.92, 95% CI (0.62, 1.30). Our findings suggest that physical activity is more protective against Alzheimer’s disease than it is for all-cause dementia, vascular dementia, and cognitive decline.


Sign in / Sign up

Export Citation Format

Share Document