Comparative study on foaming process of thermoplastic polyester and polyether polyurethane with supercritical CO2 as foaming agent

2019 ◽  
Vol 59 (5) ◽  
pp. 457-468
Author(s):  
Xin Liu ◽  
Chuang Wei ◽  
Xueqin Deng ◽  
Xianwu Cao
2019 ◽  
Vol 25 (4) ◽  
pp. 43-49
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE ◽  
ANA CASANDRA SEBE

The paper presents an aluminum foam experimental technique using the microwave energy. The raw material was recycling aluminum waste processed by ecological melting and gas atomizing to obtain the fine powder required in the foaming process. The powder mixture was completed with dolomite as a foaming agent. The products had a fine and homogeneous porous structure (pore size between 0.4-0.9 mm). The density (1.17-1.19 g/cm3), the compressive strength (6.83-7.01 MPa) and the thermal conductivity (5.71-5.84 W/m·K) had values almost similar to the foams made by conventional methods.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 985 ◽  
Author(s):  
Yidong Liu ◽  
Lingfeng Jian ◽  
Tianhua Xiao ◽  
Rongtao Liu ◽  
Shun Yi ◽  
...  

CO2 has been regarded as one of the most promising blowing agents for polystyrene (PS) foam due to its non-flammability, low price, nontoxicity, and eco-friendliness. However, the low solubility and fast diffusivity of CO2 in PS hinder its potential applications. In this study, an attapulgite (ATP)/polypyrrole (PPy) nanocomposite was developed using the in situ polymerization method to generate the hierarchical cell texture for the PS foam based on the supercritical CO2 foaming. The results demonstrated that the nanocomposite could act as an efficient CO2 capturer enabling the random release of it during the foaming process. In contrast to the pure PS foam, the ATP/PPy nanocomposite reinforced PS foam is endowed with high cell density (up to 1.9 × 106) and similar thermal conductivity as the neat PS foam, as well as high compression modulus. Therefore, the in situ polymerized ATP/PPy nanocomposite makes supercritical CO2 foaming desired candidate to replace the widely used fluorocarbons and chlorofluorocarbons as PS blowing agents.


2017 ◽  
Vol 135 (7) ◽  
pp. 45824 ◽  
Author(s):  
Jasna Ivanovic ◽  
Kurosch Rezwan ◽  
Stephen Kroll

2019 ◽  
Vol 946 ◽  
pp. 84-90
Author(s):  
Liudmila Shtirc ◽  
Svetlana G. Vlasova ◽  
Dmitry Meshcherskikh

In our work we defined two directions for synthesizing porous material: pulping selected experimental glass compositions and using caustic soda as a foaming agent. We studied the foaming temperature settings, investigated the porous material properties. The intensity of the foaming process was estimated from the value of the foaming coefficient.


Sign in / Sign up

Export Citation Format

Share Document