Performance of cotton crop grown under surface irrigation and drip fertigation. II. Field water-use efficiency and dry matter distribution

2001 ◽  
Vol 32 (19-20) ◽  
pp. 3063-3076 ◽  
Author(s):  
Mussaddak Janat ◽  
George Somi
2014 ◽  
Vol 6 (2) ◽  
pp. 457-462 ◽  
Author(s):  
L. Vimalendran ◽  
K. R. Latha

Field experiments were carried out during two seasons (August-February) of 2011-12 and 2012-13 at Millet Breeding Station, Tamil Nadu Agricultural University, Coimbatore, to study the effect of drip fertigation on productivity, water use and water use efficiency of pigeonpea (Cajanus cajan) cv. LRG 41. The treatments included three irrigation regimes (50 %, 75 %, 100 % computed water requirement of crop) and surface irrigation along with three fertilizer levels with water soluble fertilizer (WSF) and conventional fertilizers (CF). The treatments were laid out in Randomized Block Design with three replications. The results revealed that drip irrigation at 100 % WRc with fertigation at 125 % RDF through WSF registered significantly highest grain yield of 2812 and 2586 kg ha-1 during 2011-12 and 2012-13, respectively. Surface irrigation with conventional method of fertilizer application recorded lower water use efficiency of 3.70 and 3.38 kg ha-1 mm-1 whereas it was reverse with drip irrigation of 100 % WRc + 125 % RDF through WSF with a WUE of 6.97 kg ha-1 mm-1 during 2011-12 and during second season (2012-13), the highest WUE of 6.72 kg ha-1 mm-1 was recorded in drip irrigation at 50 % WRc along with fertigation at 125 % RDF through WSF. The increase in grain yield with drip irrigation at 100 % WRc + fertigation with 125 % RDF through WSF was mainly attributed by greater and consistent availability of soil moisture and nutrients which resulted in better crop growth, yield components and ultimately reflected on water use efficiency and yield of pigeonpea Cajanus cajan.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 495 ◽  
Author(s):  
Pingfeng Li ◽  
Huang Tan ◽  
Jiahang Wang ◽  
Xiaoqing Cao ◽  
Peiling Yang

Although water-saving measures are increasingly being adopted in orchards, little is known about how different irrigation methods enhance water use efficiency at the root system level. To study the allocation of water sources of water absorption by cherry roots under two irrigation methods, surface irrigation and drip irrigation, oxygen isotope tracing and root excavation were used in this study. We found that different irrigation methods have different effects on the average δ18O content of soil water in the soil profile. The IsoSource model was applied to calculate the contribution rate of water absorption by cherry roots under these irrigation methods. During the drought period in spring (also a key period of water consumption for cherry trees), irrigation water was the main source of water absorbed by cherry roots. In summer, cherry roots exhibited a wide range of water absorption sources. In this case, relative to the surface irrigation mode, the drip irrigation mode demonstrated higher irrigation water use efficiency. After two years of the above experiment, root excavation was used to analyze the effects of these irrigation methods on the distribution pattern of roots. We found that root distribution is mainly affected by soil depth. The root system indexes in 10–30 cm soil layer differ significantly from those in other soil layers. Drip irrigation increased the root length density (RLD) and root surface area (RSA) in the shallow soil. There was no significant difference in root biomass density (RBD) and root volume ratio (RVR) between the two irrigation treatments. The effects of these irrigation methods on the 2D distribution of cherry RBD, RLD, RSA and RVR, which indicated that the cherry roots were mainly concentrated in the horizontal depths of 20 to 100 cm, which was related to the irrigation wet zone. In the current experiment, more than 85% of cherry roots were distributed in the space with horizontal radius of 0 to 100 cm and vertical depth of 0 to 80 cm; above 95% of cherry roots were distributed in the space with the horizontal radius of 0 to 150 cm and the vertical depth of 0 to 80 cm. Compared with surface irrigation, drip irrigation makes RLD and RSA more concentrated in the horizontal range of 30–100 cm and vertical range of 0–70 cm.


2002 ◽  
Vol 42 (7) ◽  
pp. 945 ◽  
Author(s):  
J. L. Jacobs ◽  
G. N. Ward ◽  
A. M. McDowell ◽  
G. Kearney

Effect of cultivation practice and sowing time on soil moisture retention at sowing, growth rates, dry matter yield, water use efficiency and nutritive characteristics (metabolisable energy, crude protein, neutral detergent fibre, water-soluble carbohydrates and starch) of turnip, pasja and rape was determined on 2 soil types (site A and B) over 2 years. Cultivation treatments were: optimum full inversion, an optimum non-inversion cultivation and over cultivated. At each site, cultivation treatments were imposed at 2 different times (early and late).Results showed few differences in soil moisture at sowing between the 3 cultivation systems. Where seedbeds were prepared earlier rather than later, soil moisture at sowing was higher. Given that there was relatively little difference in soil moisture between cultivation treatments within a sowing time, it is likely that rainfall events may have confounded cultivation effects.Apart from year 2 at site A, the water use efficiency of turnip was higher than for pasja and rape. It is proposed that the lower value in year 2 may be due to root development being retarded by low moisture availability, particularly at the later sowing date, thus leading to a lower dry matter yield.Despite no cultivation effects on soil moisture at sowing, there appeared to be clear advantages for the full inversion technique in terms of subsequent weed germination. Generally, weed numbers post germination were lower for this cultivation method compared with both non-inversion techniques. In conclusion, the cultivation techniques used had little effect on soil moisture at sowing and subsequent dry matter yields, provided the resultant seedbed was well-prepared, fine, firm and weed free. Full inversion cultivation techniques in areas where broad-leaved weeds are a problem may substantially reduce subsequent weed burdens. Early sowing where possible may reduce the likelihood of crop failure through the provision of adequate soil moisture at sowing and increase the incidence of rain during the growing period. Timing of sowing will vary according to paddock requirements during early spring (e.g. grazing or forage conservation), soil type, and trafficability for cultivation.


1997 ◽  
Vol 37 (6) ◽  
pp. 667 ◽  
Author(s):  
W. M. Strong ◽  
R. C. Dalal ◽  
J. E. Cooper ◽  
J. A. Doughton ◽  
E. J. Weston ◽  
...  

Summary. Continuous cereal cropping in southern Queensland and northern New South Wales has depleted native soil nitrogen fertility to a level where corrective strategies are required to sustain grain yields and high protein content. The objective of this study was to examine the performance of chickpea in chickpea–wheat rotations in terms of yields, water use and N2 fixation. The effects of sowing time and tillage practice have been studied. Chickpea grain yields varied from 356 kg/ha in 1995 to 2361 kg/ha in 1988; these were significantly correlated with the total rainfall received during the preceding fallow period and crop growth. Almost 48% of total plant production and 30% of total plant nitrogen were below-ground as root biomass. Mean values of water-use efficiency for grain, above-ground dry matter, and total dry matter were 5.9, 14.2 and 29.2 kg/ha.mm, respectively. The water-use efficiency for grain was positively correlated with the total rainfall for the preceding fallow and crop growth period although cultural practices modified water-use efficiency. The potential N2 fixation was estimated to be 0.6 kg nitrogen/ha.mm from 1992 total dry matter nitrogen yields assuming all of the nitrogen contained in chickpea was derived from the atmosphere. Sowing time had a much larger effect on grain yield and N2 fixation by chickpea than tillage practice (conventional tillage and zero tillage) although zero tillage generally increased grain yields. The late May–early June sowing time was found to be the best for chickpea grain yield and N2 fixation since it optimised solar energy use and water use, and minimised frost damage. Nitrogen fixation by chickpea was low, less than 40% nitrogen was derived from atmosphere, representing less than 20 kg nitrogen/ha.year. The potential for N2 fixation was not attained during this period due to below-average rainfall and high soil NO3-N accumulation because of poor utilisation by the preceding wheat crop. Increased soil NO3-N due to residual from fertiliser N applied to the preceding wheat crop further reduced N2 fixation. A simple soil nitrogen balance indicated that at least 60% of crop nitrogen must be obtained from N2 fixation to avoid continued soil nitrogen loss. This did not occur in most years. The generally negative soil nitrogen balance needs to be reversed if chickpea is to be useful in sustainable cropping systems although it is an attractive cash crop. Sowing time and zero tillage practice, possibly combined with more appropriate cultivars, to enhance chickpea biomass, along with low initial soil NO3-N levels, would provide maximum N2 fixation.


1993 ◽  
Vol 33 (2) ◽  
pp. 245 ◽  
Author(s):  
PG Tow

The persistence and water use efficiency of Digitaria eriantha spp. eriantha and Hunter river lucerne were compared on red solodic soil with a hardsetting surface and poor internal drainage, on the North- West Slopes of New South Wales. After prolonged watering, the profile was wet to a depth of 48 � 1.5 cm, with an available moisture store of 90 mm. Over 3 years, persistence of digitaria was excellent. The population of lucerne was reduced following flooding at summer temperatures, Dry matter production of nitrogen (N) fertilised digitaria per mm warm season rainfall was similar to that of tropical grasses adapted to comparable rainfall environments in subtropical Queensland. Lucerne dry matter per mm rainfall was only about half that of digitaria (3.2 v. 6.3 kg). Lucerne grew well in mixture with digitaria except under prolonged wet soil conditions in summer. Artificial solodic profiles were constructed in the glasshouse to compare digitaria and lucerne in monoculture and mixture under varying temperature, moisture, and N regimes. Lucerne showed sensitivity to both high and low moisture levels at summer temperatures but performed very well at spring temperatures and moderate moisture levels where the mean evapotranspiration ratio was 400 g water per g dry matter. Water use efficiency was higher in digitaria than in lucerne, except at spring temperatures without added N. Water use efficiency of the mixture was always similar to that of the most efficient monoculture of the particular treatment.


1988 ◽  
Vol 15 (6) ◽  
pp. 815 ◽  
Author(s):  
GC Wright ◽  
KT Hubick ◽  
GD Farquhar

Variation in water-use efficiency (W, g of total dry matter produced/kg water used), and its correlation with cultivar isotope discrimination in leaves (Δ) was assessed in peanut plants grown in small canopies in the field. Plants were grown in separate minilysimeters that were both embedded in the ground and positioned above the crop. Differences among cultivars were found in W and � and the relationship between W and Δ was compared for plants grown in open and closed canopies. Genetic variability in W in plants grown in the field under non-limiting water conditions was demonstrated, with Tifton-8, of Virginia habit, having the highest W (3.71 g/kg) and Rangkasbitung, an Indonesian cultivar of Spanish habit, the lowest (2.46 g/ kg). Variability in W was due to variation in total dry matter production more than that of water use. A strong negative correlation was found between Δ and W, and also between Δ and total dry matter. The relationship between whole plant W, including roots, and Δ was stronger than that between shoot W, without roots and Δ. The improvement occurred because of variation among cultivars in the root to shoot ratio. This highlights the importance of taking account of root dry matter in studies concerning W. There were significant differences in W and Δ between plants in pots above-ground compared to pots in the ground, with above-ground plants having significantly lower values of both W and Δ. The ranking of W and Δ among cultivars was not affected by the contrast in environment, which suggests these parameters are under strong genetic control. Total above-ground dry matter yield at maturity was negatively correlated with Δ, while pod yield was not. It appears a negative association between harvest index and Δ may exist; however not all cultivars used in this and other studies follow this response. Both water-use efficiency, Wand total dry matter production are negatively correlated with Δ in leaves of peanut plants grown in small canopies in the field. Measurement of Δ may prove a useful trait for selecting cultivars with improved W and total dry matter yield under field conditions.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1624 ◽  
Author(s):  
Lijian Zheng ◽  
Juanjuan Ma ◽  
Xihuan Sun ◽  
Xianghong Guo ◽  
Qiyun Cheng ◽  
...  

The future production of irrigated fruit orchards in the Loess Plateau of China is threatened by a shortage of freshwater. To improve water use efficiency under conditions where irrigation is limited, it is necessary to quantify the root water uptake (RWU) of apple trees. The RWU of apple trees was estimated under surface irrigation using water stable isotope technology and the Hydrus-1D model. Using the Romero-Saltos and IsoSource models, the stable isotopes of water in stems, different soil depths, and different precipitation were analyzed in a 5-year-old dwarfing apple orchard during two seasons 2016 and 2017. Hydrus-1D model was able to simulate the RWU of apple using the maximum coefficient of determination (0.9), providing a root mean square error of 0.019 cm3 cm−3 and a relative error of 2.25%. The results showed that the main depth of RWU ranged from 0–60 cm during the growth season, with the main contribution occurring in the 0–40 cm depth. These findings indicated that reducing the traditional surface irrigation depth will be important for improving the irrigation water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document