scholarly journals Nerve-induced remodeling of muscle basal lamina during synaptogenesis.

1986 ◽  
Vol 102 (3) ◽  
pp. 863-877 ◽  
Author(s):  
M J Anderson

To identify mechanisms that regulate the deposition of the junctional basal lamina during synaptogenesis, immunocytochemical experiments were carried out on cultured nerve and muscle cells derived from Xenopus laevis embryos. In some experiments successive observations were made on individual muscle cells after pulse-labeling with a fluorescent monoclonal antibody specific for a basal lamina proteoglycan. In others, old and new proteoglycan molecules were differentially labeled with antibody conjugated to contrasting fluorochromes. These observations revealed that surface deposits of antibody-labeled proteoglycan remain morphologically stable for several days on developing muscle cells. Over the same period, however, new sites of proteoglycan accumulation formed that contained primarily those antigenic sites recently exposed at the cell surface. When muscle cells became innervated by cholinergic neurites, new proteoglycan accumulations were induced at the developing neuromuscular junctions, and these too were composed almost exclusively of recently deposited antigen. In older muscle cultures, where many cells possessed relatively high background concentrations of antigen over their surfaces, developing neuromuscular junctions initially showed a markedly reduced proteoglycan site-density compared with the adjacent, extrajunctional muscle surface. Much of this perineural region eventually became filled with dense, nerve induced proteoglycan plaques at later stages of synapse development. Motoneurons thus appear to have two, superficially paradoxical effects on muscle basal lamina organization. They first cause the removal of any existing, extrajunctional proteoglycan from the path of cell contact, and then induce the deposition of dense plaques of recently synthesized proteoglycan within the developing junctional basal lamina. This observation suggests that the proteolytic enzyme systems that have already been implicated in tissue remodeling may also contribute to the inductive interaction between nerve and muscle cells during synaptogenesis.

1996 ◽  
Vol 16 (9) ◽  
pp. 4972-4984 ◽  
Author(s):  
M J Anderson ◽  
Z Q Shi ◽  
S L Zackson

To explore whether a neural modulation of muscle integrins' extracellular ligand interactions contributes to synapse induction, we compared the distributions of beta1-integrins and basal lamina proteins on Xenopus myotomal myocytes developing in culture. beta1-Integrins formed numerous organized aggregates scattered over the entire muscle surface, with particularly dense accumulations at specialized sites resembling myotendinous and neuromuscular junctions. Integrin aggregates on muscle cells differed from those on surrounding fibroblasts and epithelial cells, both in their lack of response to cross-linking by multivalent ligands and in their consistent association with the cells' own extracellular matrices. Muscle integrin clusters were usually associated with congruent basal lamina accumulations containing laminin and a heparan sulfate proteoglycan (HSPG), sometimes including fibronectin and vitronectin acquired from the surrounding medium. Immediately prior to synaptic differentiation, any existing laminin and HSPG accumulations along the path of cell contact were eliminated, disrupting otherwise stable laminin-integrin complexes. This apparently proteolytic modulation of integrins' extracellular ligand interactions was soon followed by the accumulation of new congruent accumulations of laminin and HSPG in the developing synaptic basal lamina. Combining these results with earlier findings, we consider the possibility that postsynaptic differentiation is induced, at least in part, by the proteolytic disruption of integrin-ligand complexes at sites of nerve-muscle contact.


1984 ◽  
Vol 32 (9) ◽  
pp. 973-981 ◽  
Author(s):  
B W Lubit

Previous immunocytochemical studies in which an antibody specific for mammalian cytoplasmic actin was used showed that a high concentration of cytoplasmic actin exists at neuromuscular junctions of rat muscle fibers such that the distribution of actin corresponded exactly to that of the acetylcholine receptors. Although clusters of acetylcholine receptors also are present in noninnervated rat and chick muscle cells grown in vitro, neither the mechanism for the formation and maintenance of these clusters nor the relationship of these clusters to the high density of acetylcholine receptors at the neuromuscular junction in vivo are known. In the present study, a relationship between beta-cytoplasmic actin and acetylcholine receptors in vitro has been demonstrated immunocytochemically using an antibody specific for the beta-form of cytoplasmic actin. Networks of cytoplasmic actin-containing filaments were found in discrete regions of the myotube membrane that also contained high concentrations of acetylcholine receptors; such high concentrations of acetylcholine receptors have been described in regions of membrane-substrate contact. Moreover, when primary rat myotubes were exposed to human myasthenic serum, gross morphological changes, accompanied by an apparent rearrangement of the cytoplasmic actin-containing cytoskeleton, were produced. Although whether the distribution of cytoplasmic actin-containing structures was influenced by the organization of acetylcholine receptor or vice versa cannot be determined from these studies, these findings suggest that in primary rat muscle cells grown in vitro, acetylcholine receptors and beta-cytoplasmic actin-containing structures may be somehow connected.


1988 ◽  
Vol 8 (7) ◽  
pp. 2896-2909 ◽  
Author(s):  
E A Sternberg ◽  
G Spizz ◽  
W M Perry ◽  
D Vizard ◽  
T Weil ◽  
...  

Terminal differentiation of skeletal myoblasts is accompanied by induction of a series of tissue-specific gene products, which includes the muscle isoenzyme of creatine kinase (MCK). To begin to define the sequences and signals involved in MCK regulation in developing muscle cells, the mouse MCK gene has been isolated. Sequence analysis of 4,147 bases of DNA surrounding the transcription initiation site revealed several interesting structural features, some of which are common to other muscle-specific genes and to cellular and viral enhancers. To test for sequences required for regulated expression, a region upstream of the MCK gene from -4800 to +1 base pairs, relative to the transcription initiation site, was linked to the coding sequences of the bacterial chloramphenicol acetyltransferase (CAT) gene. Introduction of this MCK-CAT fusion gene into C2 muscle cells resulted in high-level expression of CAT activity in differentiated myotubes and no detectable expression in proliferating undifferentiated myoblasts or in nonmyogenic cell lines. Deletion mutagenesis of sequences between -4800 and the transcription start site showed that the region between -1351 and -1050 was sufficient to confer cell type-specific and developmentally regulated expression on the MCK promoter. This upstream regulatory element functioned independently of position, orientation, or distance from the promoter and therefore exhibited the properties of a classical enhancer. This upstream enhancer also was able to confer muscle-specific regulation on the simian virus 40 promoter, although it exhibited a 3- to 5-fold preference for its own promoter. In contrast to the cell type- and differentiation-specific expression of the upstream enhancer, the MCK promoter was able to function in myoblasts and myotubes and in nonmyogenic cell lines when combined with the simian virus 40 enhancer. An additional positive regulatory element was identified within the first intron of the MCK gene. Like the upstream enhancer, this intragenic element functioned independently of position, orientation, and distance with respect to the MCK promoter and was active in differentiated myotubes but not in myoblasts. These results demonstrate that expression of the MCK gene in developing muscle cells is controlled by complex interactions among multiple upstream and intragenic regulatory elements that are functional only in the appropriate cellular context.


1989 ◽  
Vol 109 (5) ◽  
pp. 2189-2195 ◽  
Author(s):  
W B Isaacs ◽  
I S Kim ◽  
A Struve ◽  
A B Fulton

Although significant progress has been made regarding the structure and function of titin, little data exist on the biosynthesis of this large protein in developing muscle. Using pulse-labeling with [35S]methionine and immunoprecipitation with an anti-titin mAb, we have examined the biosynthesis of titin in synchronized cultures of skeletal muscle cells derived from day 12 chicken embryos. We find that: (a) titin synthesis increases greater than 4-fold during the first week in culture and during this same time period, synthesis of muscle-specific myosin heavy chain increases greater than 12-fold; (b) newly synthesized titin has a t1/2 of approximately 70 h; (c) titin is resistant to extraction with Triton X-100 both during and immediately after its synthesis. These observations suggest that newly synthesized titin molecules are stable proteins that rapidly associate with the cytoskeleton of developing myotubes.


1991 ◽  
Vol 115 (3) ◽  
pp. 755-764 ◽  
Author(s):  
L Anglister

Acetylcholinesterase (AChE) in skeletal muscle is concentrated at neuromuscular junctions, where it is found in the synaptic cleft between muscle and nerve, associated with the synaptic portion of the myofiber basal lamina. This raises the question of whether the synaptic enzyme is produced by muscle, nerve, or both. Studies on denervated and regenerating muscles have shown that myofibers can produce synaptic AChE, and that the motor nerve may play an indirect role, inducing myofibers to produce synaptic AChE. The aim of this study was to determine whether some of the AChE which is known to be made and transported by the motor nerve contributes directly to AChE in the synaptic cleft. Frog muscles were surgically damaged in a way that caused degeneration and permanent removal of all myofibers from their basal lamina sheaths. Concomitantly, AChE activity was irreversibly blocked. Motor axons remained intact, and their terminals persisted at almost all the synaptic sites on the basal lamina in the absence of myofibers. 1 mo after the operation, the innervated sheaths were stained for AChE activity. Despite the absence of myofibers, new AChE appeared in an arborized pattern, characteristic of neuromuscular junctions, and its reaction product was concentrated adjacent to the nerve terminals, obscuring synaptic basal lamina. AChE activity did not appear in the absence of nerve terminals. We concluded therefore, that the newly formed AChE at the synaptic sites had been produced by the persisting axon terminals, indicating that the motor nerve is capable of producing some of the synaptic AChE at neuromuscular junctions. The newly formed AChE remained adherent to basal lamina sheaths after degeneration of the terminals, and was solubilized by collagenase, indicating that the AChE provided by nerve had become incorporated into the basal lamina as at normal neuromuscular junctions.


Non-motile cilia of the (9 + 2) pattern, having a specialized onion-like root structure, act as sensitive receptors of water displacement and thereby detect vibrations of small objects in the water nearby. These receptors are situated on sensory nerve cells on finger-like processes up to 1 cm long, on the surface of the ctenophore Leucothea ( = Eucharis) multicornis . In response to vibration a single finger can shoot outwards as an independent effector by an extension of its mesogloeal hydrostatic skeleton, acted on by circular and transverse muscle fibres which run mainly through the mesogloea. A copepod which may be hit is immobilized, presumably by a poisonous secretion. Retraction is brought about by longitudinal ectodermal fibres. The neuromuscular junctions have presynaptic vesicles of 30 to 50 nm diameter, a cleft of 15 to 20 nm wide, and occur at discrete points far from each other on the muscle cells, suggesting that excitation is propagated along the muscle fibres. No direct connexion has been traced between a sensory ciliated cell and a muscle fibre, but sensory cells connect with nerve net neurons and these form synapses with each other and with muscle cells. There are numerous nerve fibres in the epithelium and synapses with vesicles on one side of a cleft 12 to 15 nm wide occur between them sufficiently closely for spatial summation to be possible. The separate co-ordination of movements of extension, retraction and bending requires that certain types of sensory cells be connected specifically, if in directly, with muscle fibres of a particular directionality. This provides a primitive example of specificity of connexions which must imply two overlapping nerve nets.


1967 ◽  
Vol 35 (2) ◽  
pp. 405-420 ◽  
Author(s):  
Elizabeth B. Ezerman ◽  
Harunori Ishikawa

The electron microscope was used to investigate the first 10 days of differentiation of the SR and the T system in skeletal muscle cultured from the breast muscle of 11-day chick embryos. The T-system tubules could be clearly distinguished from the SR in developing muscle cells fixed with glutaraldehyde and osmium tetroxide. Ferritin diffusion confirmed this finding: the ferritin particles were found only in the tubules identified as T system. The proliferation of both membranous systems seemed to start almost simultaneously at the earliest myotube stage. Observations suggested that the new SR membranes developed from the rough-surfaced ER as tubular projections. The SR tubules connected with one another to form a network around the myofibril. The T-system tubules were formed by invagination of the sarcolemma. The early extension of the T system by branching and budding was seen only in subsarcolemmal regions. Subsequently the T-system tubules could be seen deep within the muscle cells. Immediately after invaginating, the T-system tubule formed, along its course, specialized connections with the SR or ER: triadic structures showing various degrees of differentiation. The simultaneous occurrence of myofibril formation and membrane proliferation is considered to be important in understanding the coordinated events resulting in the differentiated myotube.


1969 ◽  
Vol 42 (1) ◽  
pp. 135-153 ◽  
Author(s):  
A. M. Kelly ◽  
S. I. Zacks

Intercostal muscle from fetal and newborn rats was examined with the electron microscope. At 16 days' gestation, the developing muscle was composed of primary generations of myotubes, many of which were clustered together in groups. Within these groups, the membranes of neighboring myotubes were interconnected by specialized junctions, including tight junctions. Morphologically undifferentiated cells surrounded the muscle groups, frequently extended pseudopodia along the interspace between adjacent myotubes, and appeared to separate neighboring myotubes from one another. At 18 and 20 days' gestation, the muscle was also composed of groups of cells but the structure of the groups differed from that of the groups observed at 16 days. Single, well differentiated myotubes containing much central glycogen and peripheral myofibrils dominated each group. These large cells were interpreted as primary myotubes. Small, less differentiated muscle cells and undifferentiated cells clustered around their walls. Each cluster was ensheated by a basal lamina. The small cells were interpreted as primordia of new generations of muscle cells which differentiated by appositional growth along the walls of the large primary myotubes. All generations of rat intercostal muscle cells matured to myofibers between 20 days' gestation and birth. Coincidentally, large and small myofibers diverged from each other, leading to disintegration of the groups of muscle cells. Undifferentiated cells frequently occurred in the interspaces between neighboring muscle cells at the time of separation. Myofibers arising at different stages of muscle histogenesis intermingled in a checkerboard fashion as a result of this asynchronous mode of development. The possibility of fusion between neighboring muscle cells in this developing system is discussed.


2000 ◽  
Vol 219 (4) ◽  
pp. 514-525 ◽  
Author(s):  
Grazyna Chanas-Sacr� ◽  
Marc Thiry ◽  
Sandrine Pirard ◽  
Bernard Rogister ◽  
Gustave Moonen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document