scholarly journals Association of beta-cytoplasmic actin with high concentrations of acetylcholine receptor (AChR) in normal and anti-AChR-treated primary rat muscle cultures.

1984 ◽  
Vol 32 (9) ◽  
pp. 973-981 ◽  
Author(s):  
B W Lubit

Previous immunocytochemical studies in which an antibody specific for mammalian cytoplasmic actin was used showed that a high concentration of cytoplasmic actin exists at neuromuscular junctions of rat muscle fibers such that the distribution of actin corresponded exactly to that of the acetylcholine receptors. Although clusters of acetylcholine receptors also are present in noninnervated rat and chick muscle cells grown in vitro, neither the mechanism for the formation and maintenance of these clusters nor the relationship of these clusters to the high density of acetylcholine receptors at the neuromuscular junction in vivo are known. In the present study, a relationship between beta-cytoplasmic actin and acetylcholine receptors in vitro has been demonstrated immunocytochemically using an antibody specific for the beta-form of cytoplasmic actin. Networks of cytoplasmic actin-containing filaments were found in discrete regions of the myotube membrane that also contained high concentrations of acetylcholine receptors; such high concentrations of acetylcholine receptors have been described in regions of membrane-substrate contact. Moreover, when primary rat myotubes were exposed to human myasthenic serum, gross morphological changes, accompanied by an apparent rearrangement of the cytoplasmic actin-containing cytoskeleton, were produced. Although whether the distribution of cytoplasmic actin-containing structures was influenced by the organization of acetylcholine receptor or vice versa cannot be determined from these studies, these findings suggest that in primary rat muscle cells grown in vitro, acetylcholine receptors and beta-cytoplasmic actin-containing structures may be somehow connected.

1981 ◽  
Vol 90 (3) ◽  
pp. 789-792 ◽  
Author(s):  
Z W Hall ◽  
B W Lubit ◽  
J H Schwartz

We used an antibody prepared against Aplysia (mollusc) body-wall actin that specifically reacts with certain forms of cytoplasmic actin in mammalian cells to probe for the presence of actin at the neuromuscular junction. Immunocytochemical studies showed that actin or an actinlike molecule is concentrated at neuromuscular junctions of normal and denervated adult rat muscle fibers. Actin is present at the neuromuscular junctions of fibers of developing diaphragm muscles as early as embryonic day 18, well before postsynaptic folds are formed. These results suggest that cytoplasmic actin may play a role in the clustering or stabilization of acetylcholine receptors at the neuromuscular junction.


1989 ◽  
Vol 109 (5) ◽  
pp. 2337-2344 ◽  
Author(s):  
G Marazzi ◽  
F Bard ◽  
M W Klymkowsky ◽  
L L Rubin

We have shown previously that chick muscle cells transformed with Rous sarcoma virus are unable to form clusters of acetylcholine receptors (AChRs) (Anthony, D. T., S. M. Schuetze, and L. L. Rubin. 1984. Proc. Natl. Acad. Sci. USA. 81:2265-2269) and are missing a 37-KD tropomyosin-like protein (TM-2) (Anthony, D. T., R. J. Jacobs-Cohen, G. Marazzi, and L. L. Rubin. 1988. J. Cell Biol. 106:1713-1721). In an attempt to clarify the role of TM-2 in the formation and/or maintenance of AChR clusters, we have microinjected a monoclonal antibody specific for TM-2 (D3-16) into normal chick muscle cells in culture. D3-16 injection blocks the formation of new clusters but does not affect the preexisting ones. In addition, TM-2 is concentrated at rat neuromuscular junctions. These data suggest that TM-2 may play an important role in promoting the formation of AChR clusters.


2020 ◽  
Vol 65 (9-10) ◽  
pp. 3-7
Author(s):  
V. V. Gostev ◽  
Yu. V. Sopova ◽  
O. S. Kalinogorskaya ◽  
M. E. Velizhanina ◽  
I. V. Lazareva ◽  
...  

Glycopeptides are the basis of the treatment of infections caused by MRSA (Methicillin-Resistant Staphylococcus aureus). Previously, it was demonstrated that antibiotic tolerant phenotypes are formed during selection of resistance under the influence of high concentrations of antibiotics. The present study uses a similar in vitro selection model with vancomycin. Clinical isolates of MRSA belonging to genetic lines ST8 and ST239, as well as the MSSA (ATCC29213) strain, were included in the experiment. Test isolates were incubated for five hours in a medium with a high concentration of vancomycin (50 μg/ml). Test cultures were grown on the medium without antibiotic for 18 hours after each exposure. A total of ten exposure cycles were performed. Vancomycin was characterized by bacteriostatic action; the proportion of surviving cells after exposure was 70–100%. After selection, there was a slight increase in the MIC to vancomycin (MIC 2 μg/ml), teicoplanin (MIC 1.5–3 μg/ml) and daptomycin (MIC 0.25–2 μg/ml). According to the results of PAP analysis, all strains showed an increase in the area under curve depending on the concentration of vancomycin after selection, while a heteroresistant phenotype (with PAP/AUC 0.9) was detected in three isolates. All isolates showed walK mutations (T188S, D235N, E261V, V380I, and G223D). Exposure to short-term shock concentrations of vancomycin promotes the formation of heteroresistance in both MRSA and MSSA. Formation of VISA phenotypes is possible during therapy with vancomycin.


2011 ◽  
Vol 286 (12) ◽  
pp. 10618-10627 ◽  
Author(s):  
Ekaterina N. Lyukmanova ◽  
Zakhar O. Shenkarev ◽  
Mikhail A. Shulepko ◽  
Konstantin S. Mineev ◽  
Dieter D'Hoedt ◽  
...  

Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5–30 μm, ws-LYNX1 competed with 125I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μm ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μm caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.


2022 ◽  
pp. 1-9
Author(s):  
Hiroshi Nozaki ◽  
Yoshihiro Tange ◽  
Yoji Inada ◽  
Takashi Uchino ◽  
Nakanobu Azuma

<b><i>Introduction:</i></b> Ultrapurification of dialysis fluid has enabled highly efficient dialysis treatments. Online hemodiafiltration is one such treatment that uses a purified dialysis fluid as a supplemental fluid. In this method, an endotoxin retentive filter (ETRF) is used in the final step of dialysis fluid purification, with the aim of preventing leakage of endotoxins. Sodium hypochlorite and peracetic acid are used as disinfecting agents for the dialysis fluid pipes containing the ETRF; however, the effects of these agents on ETRF membrane pores have not been fully clarified. <b><i>Methods:</i></b> Water permeability (flux) and endotoxin permeability were assessed in 3 types of ETRFs made with different membrane materials: polyester polymer alloy (PEPA), polyether sulfone (PES), and polysulfone (PS). High-concentration sodium hypochlorite and 2 types of peracetic acid were used as disinfecting agents, and the changes in flux and the endotoxin sieving coefficient (SC) were measured. <b><i>Results:</i></b> After repeated use of high concentrations of sodium hypochlorite and peracetic acid, the PEPA and PES ETRFs did not permit passage of endotoxins, regardless of their flux. However, in the PS ETRF, the flux and endotoxin SC increased with the number of cleaning cycles. No differences were observed according to the concentration of peracetic acid disinfecting agents. <b><i>Conclusion:</i></b> PEPA and PES ETRFs completely prevent endotoxin leakage and can be disinfected at concentrations higher than the conventionally recommended concentration without affecting pore expansion. Even new PS ETRFs have low levels of endotoxin leakage, which increase after disinfection cycles using sodium hypochlorite and peracetic acid.


2014 ◽  
Vol 15 (4) ◽  
pp. 392-398 ◽  
Author(s):  
Wilcilene Costa Nascimento ◽  
Yasmin do Socorro Batista de Lima Gomes ◽  
Larissa Dias Alexandrino ◽  
Hilton Tulio Costi ◽  
José Otávio Carrera Silva ◽  
...  

ABSTRACT Aim The aim of this in vitro study was to evaluate the effects of different sodium fluoride (NaF) concentrations and pH values on the Knoop hardness (KHN), surface roughness (SR), and morphology of bovine incisors bleached with 35% hydrogen peroxide (HP). Materials and methods Sixty-five bovine incisors were fragmented (5 mm2 × 2 mm) and distributed in 5 groups: Control (unbleached), Low NaF/Acidic (35% HP + 1.3% NaF, pH 5.5), Low NaF/Neutral (35% HP + 1.3% NaF, pH 7.0), High NaF/ Acidic (35% HP + 2% NaF, pH 5.5), and High NaF/Neutral (35% HP + 2% NaF, pH 7.0). KHN analysis was performed with a microhardness tester under a load of 25 gf for 5 seconds. The average SR was obtained with a rugosimeter. KHN and SR were analyzed before and after treatments. For morphological analysis, specimens were dehydrated and gold-sputtered, and scanning electron micrographs were obtained and analyzed by 3 examiners with a double-blinded technique. KHN and SR results were analyzed by one-way ANOVA and Tukey's test (p < 0.05). Results Only the Low NaF/Acidic and Low NaF/Neutral groups showed significant differences between the initial and final KHN values. All bleached groups presented significant differences between the initial and final SR values. Among the bleached groups, the least and most morphological changes were shown by the High NaF/Neutral and the Low NaF/Acidic group, respectively. Conclusion Treatment with 35% HP and 2% NaF at pH 7.0 promoted the least changes in morphology, hardness and roughness among the bleached groups. Clinical significance In-office bleaching with high-concentration HP and 2% NaF at neutral pH promoted the least changes in enamel hardness, SR, and morphology compared to other treatments. How to cite this article Nascimento WC, Gomes YSBL, Alexandrino LD, Costi HT, Silva JOC Jr, Silva CM. Influence of Fluoride Concentration and pH Value of 35% Hydrogen Peroxide on the Hardness, Roughness and Morphology of Bovine Enamel. J Contemp Dent Pract 2014;15(4):392-398.


1995 ◽  
Vol 108 (9) ◽  
pp. 3145-3154 ◽  
Author(s):  
D.W. Pumplin

I used immunogold labeling and quick-freeze, deep-etch, rotary replication to characterize the membrane skeleton at regions with high concentrations of acetylcholine receptor domains in receptor clusters of cultured rat muscle cells. This membrane skeleton consists of a network of filaments closely applied to the cytoplasmic membrane surface. The filaments are specifically decorated by immunogold labeling with a monoclonal antibody, VIIF7, that recognizes an isoform of beta-spectrin colocalizing with acetylcholine receptors. The filaments are 32 +/- 11 nm in length and three to four filaments (average 3.1-3.3) join at each intersection to form the network. These parameters are nearly identical to those reported previously for the membrane skeleton of erythrocytes. Depending on the amount of platinum coating, filament diameters range from 9 to 11 nm in diameter, and are 1.4 nm larger on average than spectrin filaments of erythrocytes replicated at the same time. Filaments are decorated with gold particles close to one end, consistent with the location of the epitope recognized by the monoclonal antibody. Computer modeling shows that all filament intersections in the membrane skeletal network are equally capable of being labeled by the monoclonal antibody. This pattern of labeling is consistent with a network containing antiparallel homodimers of beta-spectrin.


1979 ◽  
Vol 82 (2) ◽  
pp. 494-516 ◽  
Author(s):  
S A Cohen ◽  
D W Pumplin

Developing chick myotubes in tissue culture were freeze-fractured to yield complementary replicas of large areas of membrane. Regions of muscle fibers with high concentrations of acetylcholine receptors were identified by binding of fluorescent-labeled alpha-bungarotoxin. Membranes in such regions contained clusters of large (100 A Diam) angular particles, similar in appearance to particles found in postsynaptic membranes of cholinergic synapses. Particles appeared in apposing areas of cytoplasmic and external leaflets but were more prevalent in the cytoplasmic leaflet. The areas of high particle concentration were coextensive with the fluorescence due to bound toxin. Treatment of cultures with tetrodotoxin increased the size of fluorescent spots and areas of high concentration of particles relative to those found in control cultures. In muscle cultures grown in the presence of spinal cord explants, some neurites contacted and innervated nearby myotubes. Intense fluorescence due to binding or alpha-bungarotoxin was present at portions of such neurite-myotube contacts. At these same portions, a high concentration of large angular particles was present in the sarcolemma adjacent to the neurite. In addition, an ordered arrangement of large particles was seen in the cytoplasmic leaflet of the neuronal plasmalemma directly apposing the muscle. The possible significance of these arrangements is discussed. Clusters on myotubes tended to be larger (contain more particles) when they occurred in groups, defined as three or more clusters with an intercluster distance of less than 0.5 micrometers. Clusters were also larger in myotubes treated with tetrodotoxin and in myotubes adjacent to some neurites in nerve-muscle cocultures. Several depressions containing particles similar to those in the clusters were found in the sarcolemma. The implications of these depressions are discussed in light of current theories of incorporation of proteins into cell membranes.


2019 ◽  
Author(s):  
Marcin Pęziński ◽  
Patrycja Daszczuk ◽  
Bhola Shankar Pradhan ◽  
Hanns Lochmüller ◽  
Tomasz J. Prószyński

AbstractMotor neurons form specialized synapses with skeletal muscle fibers, called neuromuscular junctions (NMJs). Cultured myotubes are used as a simplified in vitro system to study the postsynaptic specialization of muscles. The stimulation of myotubes with the glycoprotein agrin or laminin-111 induces the clustering of postsynaptic machinery that contains acetylcholine receptors (AChRs). When myotubes are grown on laminin-coated surfaces, AChR clusters undergo developmental remodeling to form topologically complex structures that resemble mature NMJs. Needing further exploration are the molecular processes that govern AChR cluster assembly and its developmental maturation. Here, we describe an improved protocol for culturing muscle cells to promote the formation of complex AChR clusters. We screened various laminin isoforms and showed that laminin-221 was the most potent for inducing AChR clusters, whereas laminin-121, laminin-211, and laminin-221 afforded the highest percentages of topologically complex assemblies. Human primary myotubes that were formed by myoblasts obtained from patient biopsies also assembled AChR clusters that underwent remodeling in vitro. Collectively, these results demonstrate an advancement of culturing myotubes that can facilitate high-throughput screening for potential therapeutic targets for neuromuscular disorders.


1987 ◽  
Vol 7 (6) ◽  
pp. 1728-1731 ◽  
Author(s):  
T Gonoi ◽  
Y Ohizumi ◽  
H Nakamura ◽  
J Kobayashi ◽  
WA Catterall

Sign in / Sign up

Export Citation Format

Share Document