Melittin: a Membrane-active Peptide with Diverse Functions

2007 ◽  
Vol 27 (4-5) ◽  
pp. 189-223 ◽  
Author(s):  
H. Raghuraman ◽  
Amitabha Chattopadhyay

Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid–protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin–membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.

2018 ◽  
Vol 12 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Avijit Das ◽  
Sumit Biswas ◽  
Malabika Biswas

Background:The Gp07 protein of aureophage Phi11 exhibits growth inhibitory effects when overexpressed inE. coli.The protein harbors two domains- an amino terminal Bro-like domain and a carboxy terminal Ant superfamily like KilA domain, of which the KilA domain retains the growth inhibitory effect of Gp07.Methods:We studied the effects exerted by the overexpression of Gp07 and its separate domains upon the growth rate as well as the morphology of theE. colicells. Additionally, we generated a mutant of Gp07 (designated as ΔGp07) by deleting the first eleven amino acid residues from the amino-terminal region of Gp07, and studied its growth inhibitory effects uponE. coli.Results:Our results indicate that Gp07, ΔGp07 as well as the Carboxy-terminal region of Gp07 upon overexpression, retards the growth rate of theE. colicells and also induces filamentation in the cells. Surprisingly, our data clearly suggests that the growth inhibition and filamentation induced by the the amino-terminal domain of Gp07 is temporal in nature.Conclusion:The carboxy-terminal of domain of gp07 is essential for its activity.


1989 ◽  
Vol 9 (6) ◽  
pp. 2648-2656
Author(s):  
A MacAuley ◽  
J A Cooper

The kinase activity of p60c-src is derepressed by removal of phosphate from Tyr-527, mutation of this residue to Phe, or binding of a carboxy-terminal antibody. We have compared the structures of repressed and active p60c-src, using proteases. All forms of p60c-src are susceptible to proteolysis at the boundary between the amino-terminal region and the kinase domain, but there are several sites elsewhere that are more sensitive to trypsin digestion in repressed than in derepressed forms of p60c-src. The carboxy-terminal tail (containing Tyr-527) is more sensitive to digestion by pronase E and thermolysin when Tyr-527 is not phosphorylated. The kinase domain fragment released with trypsin has kinase activity. Relative to intact p60c-src, the kinase domain fragment shows altered substrate specificity, diminished regulation by the phosphorylated carboxy terminus, and novel phosphorylation sites. The results identify parts of p60c-src that change conformation upon kinase activation and suggest functions for the amino-terminal region.


1987 ◽  
Author(s):  
A B Federici ◽  
S D Berkowitz

We have previously shown that carbohydrate (CHO) protects von Willebrand factor (vWF) from proteolytic degradation. We have now shown that removal of CHO from the vWF subunit exposes additional cleavage sites in the amino terminal region and that cleavages in this region are associated with loss of large multimers. We examined and compared the extent of large multimer loss with sites of subunit cleavage of native and GHO-modified vWF after treatment with plasmin, chymotrypsin, and trypsin. Highly purified vWF was treated with neuraminidase and β-galactosidase in the presence of proteinase inhibitors to remove 90-95% of the sialic acid and 45-50% of the D-galactose without loss of large multimers or diminution of the ristocetin cofactor activity. The extent and approximate location of subunit cleavage was determined by immunoblotting and monoclonal antibody epitope mapping. Multimeric analysis revealed an increasingly greater loss of large multimers when native vWF was digested with plasmin, chymotrypsin, and trypsin, respectively. Large multimer loss was more extensive with each enzyme after CHO-modification of vWF. On subunit analysis, plasmin, chymotrypsin, and trypsin were shown to produce both amino and carboxy terminal fragments. The number, location, and relative quantities of carboxy terminal fragments produced by these enzymes were unchanged after CHO modification. However, digestion of the amino terminal region was considerably more extensive as judged by a marked decrease or absence of the larger fragments seen when native vWF was digested, and by the appearance of new smaller molecular weight species. Thus, enzymatic digestion of vWF after removal of carbohydrate produced new cleavages in the amino terminal region but did not alter the location or extent of carboxy terminal cleavages. Therefore, the greater loss of large multimers that occurs after CHO modification is likely to be the result of cleavages in the amino terminal region of the molecule. It appears that by protecting the vWF subunit against amino terminal cleavage, carbohydrate inhibits the loss of large multimers.


1971 ◽  
Vol 133 (6) ◽  
pp. 1309-1324 ◽  
Author(s):  
Herbert Lindsley ◽  
Mart Mannik ◽  
Paul Bornstein

Immunological studies of rat skin collagen were carried out with a sensitive and quantitative radioimmunoassay. Hyperimmune rabbit antisera to rat skin collagen and isolated α2 chains were used. Iodine-labeled α chains and CNBr-produced peptides served as test antigens, and native collagen, α chains, and CNBr peptides were employed as inhibitors in the assay. The α1 and α2 chains were immunologically distinct. Although the α1 chain was not immunogenic, antibodies to α1 were detected in antisera to the intact collagen molecule. The major antigenic determinant of the α1 chain was located in α1-CB6 which constitutes the carboxy-terminal region of the chain. The α2 chain contained two non-cross-reacting antigenic determinants, one in the amino-terminal region (α2-CB1) and the other in the carboxy-terminal region (α2-CB5) of the chain. The native collagen molecule was less effective than isolated α chains in inhibiting binding of labeled peptides to antisera, indicating that antigenic determinants were less accessible in the triple helical molecule. These immunologic studies are consistent with preliminary comparative biochemical data which indicate that interspecies structural differences in collagen predominate at both the amino- and carboxy-terminal ends of the chains.


1989 ◽  
Vol 9 (4) ◽  
pp. 1445-1451 ◽  
Author(s):  
C J Green ◽  
R S Charles ◽  
B F Edwards ◽  
P H Johnson

A synthetic DNA probe designed to detect coding sequences for platelet factor 4 and connective tissue-activating peptide III (two human platelet alpha-granule proteins) was used to identify several similar sequences in total human DNA. Sequence analysis of a corresponding 3,201-base-pair EcoRI fragment isolated from a human genomic library demonstrated the existence of a variant of platelet factor 4, designated PF4var1. The gene for PF4var1 consisted of three exons and two introns. Exon 1 coded for a 34-amino-acid hydrophobic leader sequence that had 70% sequence homology with the leader sequence for PF4 but, in contrast, contained a hydrophilic amino-terminal region with four arginine residues. Exon 2 coded for a 42-amino-acid segment that was 100% identical with the corresponding segment of the mature PF4 sequence containing the amino-terminal and disulfide-bonded core regions. Exon 3 coded for the 28-residue carboxy-terminal region corresponding to a domain specifying heparin-binding and cellular chemotaxis. However, PF4var1 had amino acid differences at three positions in the lysine-rich carboxy-terminal end that were all conserved among human, bovine, and rat PF4s. These differences should significantly affect the secondary structure and heparin-binding properties of the protein based on considerations of the bovine PF4 crystal structure. By comparing the PF4var1 genomic sequence with the known human cDNA and the rat genomic PF4-coding sequences, we identified potential genetic regulatory regions for PF4var1. Rat PF4 and human PF4var1 genes had identical 18-base sequences 5' to the promoter region. The intron positions appeared to correspond approximately to the boundaries of the protein functional domains.


2017 ◽  
Vol 114 (7) ◽  
pp. 1566-1571 ◽  
Author(s):  
Doris Höglinger ◽  
André Nadler ◽  
Per Haberkant ◽  
Joanna Kirkpatrick ◽  
Martina Schifferer ◽  
...  

Lipid-mediated signaling events regulate many cellular processes. Investigations of the complex underlying mechanisms are difficult because several different methods need to be used under varying conditions. Here we introduce multifunctional lipid derivatives to study lipid metabolism, lipid−protein interactions, and intracellular lipid localization with a single tool per target lipid. The probes are equipped with two photoreactive groups to allow photoliberation (uncaging) and photo–cross-linking in a sequential manner, as well as a click-handle for subsequent functionalization. We demonstrate the versatility of the design for the signaling lipids sphingosine and diacylglycerol; uncaging of the probe for these two species triggered calcium signaling and intracellular protein translocation events, respectively. We performed proteomic screens to map the lipid-interacting proteome for both lipids. Finally, we visualized a sphingosine transport deficiency in patient-derived Niemann−Pick disease type C fibroblasts by fluorescence as well as correlative light and electron microscopy, pointing toward the diagnostic potential of such tools. We envision that this type of probe will become important for analyzing and ultimately understanding lipid signaling events in a comprehensive manner.


2003 ◽  
Vol 285 (5) ◽  
pp. H2201-H2211 ◽  
Author(s):  
Janelle R. Keys ◽  
Emily A. Greene ◽  
Chris J. Cooper ◽  
Sathyamangla V. Naga Prasad ◽  
Howard A. Rockman ◽  
...  

The G protein-coupled receptor (GPCR) kinase β-adrenergic receptor (β-AR) kinase-1 (β-ARK1) is elevated during heart failure; however, its role is not fully understood. β-ARK1 contains several domains that are capable of protein-protein interactions that may play critical roles in the regulation of GPCR signaling. In this study, we developed a novel line of transgenic mice that express an amino-terminal peptide of β-ARK1 that is comprised of amino acid residues 50–145 (β-ARKnt) in the heart to determine whether this domain has any functional significance in vivo. Surprisingly, the β-ARKnt transgenic mice presented with cardiac hypertrophy. Our data suggest that the phenotype was driven via an enhanced β-AR system, as β-ARKnt mice had elevated cardiac β-AR density. Moreover, administration of a β-AR antagonist reversed hypertrophy in these mice. Interestingly, signaling through the β-AR in response to agonist stimulation was not enhanced in these mice. Thus the amino terminus of β-ARK1 appears to be critical for normal β-AR regulation in vivo, which further supports the hypothesis that β-ARK1 plays a key role in normal and compromised cardiac GPCR signaling.


2018 ◽  
Author(s):  
Anne-Florence Bitbol

AbstractSpecific protein-protein interactions are crucial in most cellular processes. They enable multiprotein complexes to assemble and to remain stable, and they allow signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interacting partners, and thus in correlations between their sequences. Pairwise maximum-entropy based models have enabled successful inference of pairs of amino-acid residues that are in contact in the three-dimensional structure of multi-protein complexes, starting from the correlations in the sequence data of known interaction partners. Recently, algorithms inspired by these methods have been developed to identify which proteins are specific interaction partners among the paralogous proteins of two families, starting from sequence data alone. Here, we demonstrate that a slightly higher performance for partner identification can be reached by an approximate maximization of the mutual information between the sequence alignments of the two protein families. This stands in contrast with structure prediction of proteins and of multiprotein complexes from sequence data, where pairwise maximum-entropy based global statistical models substantially improve performance compared to mutual information. Our findings entail that the statistical dependences allowing interaction partner prediction from sequence data are not restricted to the residue pairs that are in direct contact at the interface between the partner proteins.Author summarySpecific protein-protein interactions are at the heart of most intra-cellular processes. Mapping these interactions is thus crucial to a systems-level understanding of cells, and has broad applications to areas such as drug targeting. Systematic experimental identification of protein interaction partners is still challenging. However, a large and rapidly growing amount of sequence data is now available. Recently, algorithms have been proposed to identify which proteins interact from their sequences alone, thanks to the co-variation of the sequences of interacting proteins. These algorithms build upon inference methods that have been used with success to predict the three-dimensional structures of proteins and multi-protein complexes, and their focus is on the amino-acid residues that are in direct contact. Here, we propose a simpler method to identify which proteins interact among the paralogous proteins of two families, starting from their sequences alone. Our method relies on an approximate maximization of mutual information between the sequences of the two families, without specifically emphasizing the contacting residue pairs. We demonstrate that this method slightly outperforms the earlier one. This result highlights that partner prediction does not only rely on the identities and interactions of directly contacting amino-acids.


1998 ◽  
Vol 66 (5) ◽  
pp. 1999-2006 ◽  
Author(s):  
K. Ross Turbyfill ◽  
Jennifer A. Mertz ◽  
Corey P. Mallett ◽  
Edwin V. Oaks

ABSTRACT Transport and surface expression of the invasion plasmid antigens (Ipa proteins) is an essential trait in the pathogenicity ofShigella spp. In addition to the type III protein secretion system encoded by the mxi/spa loci on the large virulence plasmid, transport of IpaB and IpaC into the surrounding medium is modulated by IpaD. To characterize the structural topography of IpaD, the Geysen epitope-mapping system was used to identify epitopes recognized by surface-reactive monoclonal and polyclonal antibodies produced against purified recombinant IpaD or synthetic IpaD peptides. Surface-exposed epitopes of IpaD were confined to the first 180 amino acid residues, whereas epitopes in the carboxyl-terminal half were not exposed on the Shigella surface. By using convalescent-phase sera from 10 Shigella flexneri-infected monkeys, numerous epitopes were mapped within a surface-exposed region of IpaD between amino acid residues 14 and 77. Epitopes were also identified in the carboxyl-terminal half of IpaD with a few convalescent-phase sera. Comparison of IpaD epitope sequences withSalmonella SipD sequences indicated that very similar epitopes may exist in the carboxyl-terminal region of each protein whereas the IpaD epitopes in the surface-exposed amino-terminal region were unique for the Shigella protein. Although the IpaD and SipD homologs may play similar roles in transport, the dominant serum antibody response to IpaD is against the unique region of this protein exposed on the surface of the pathogen.


1994 ◽  
Vol 14 (2) ◽  
pp. 1459-1464
Author(s):  
Y Minami ◽  
Y Kimura ◽  
H Kawasaki ◽  
K Suzuki ◽  
I Yahara

The majority of mouse HSP90 exists as alpha-alpha and beta-beta homodimers. Truncation of the 15-kDa carboxy-terminal region of mouse HSP90 by digestion with the Ca(2+)-dependent protease m-calpain caused dissociation of the dimer. When expressed in a reticulocyte lysate, the full-length human HSP90 alpha formed a dimeric form. A plasmid harboring human HSP90 alpha cDNA was constructed so that the carboxy-terminal 49 amino acid residues were removed when translated in vitro. This carboxy-terminally truncated human HSP90 alpha was found to exist as a monomer. In contrast, loss of the 118 amino acid residues from the amino terminus of human HSP90 alpha did not affect its in vitro dimerization. Introduction of an expression plasmid harboring the full-length human HSP90 alpha complements the lethality caused by the double mutations of two HSP90-related genes, hsp82 and hsc82, in a haploid strain of Saccharomyces cerevisiae. The carboxy-terminally truncated human HSP90 alpha neither formed dimers in yeast cells nor rescued the lethal double mutant.


Sign in / Sign up

Export Citation Format

Share Document