scholarly journals The alpha-tubulin gene family expressed during cell differentiation in Naegleria gruberi.

1988 ◽  
Vol 106 (6) ◽  
pp. 2035-2046 ◽  
Author(s):  
E Y Lai ◽  
S P Remillard ◽  
C Fulton

Genes that direct the programmed synthesis of flagellar alpha-tubulin during the differentiation of Naegleria gruberi from amebae to flagellates have been cloned, and found to be novel with respect to gene organization, sequence, and conservation. The flagellar alpha-tubulin gene family is represented in the genome by about eight homologous DNA segments that are exceptionally similar and yet are neither identical nor arrayed in a short tandem repeat. The coding regions of three of these genes have been sequenced, two from cDNA clones and one from an intronless genomic gene. These three genes encode an identical alpha-tubulin that is conserved relative to the alpha-tubulins of other organisms except at the carboxyl terminus, where the protein is elongated by two residues and ends in a terminal glutamine instead of the canonical tyrosine. In spite of the protein conservation, the Naegleria DNA sequence has diverged markedly from the alpha-tubulin genes of other organisms, a counterexample to the idea that tubulin genes are conserved. alpha-Tubulin mRNA homologous to this gene family has not been detected in amebae. This mRNA increases markedly in abundance during the first hour of differentiation, and then decreases even more rapidly with a half-life of approximately 8 min. The abundance of physical alpha-tubulin mRNA rises and subsequently falls in parallel with the abundance of translatable flagellar tubulin mRNA and with the in vivo rate of flagellar tubulin synthesis, which indicates that flagellar tubulin synthesis is directly regulated by the relative rates of transcription and mRNA degradation.

Development ◽  
1994 ◽  
Vol 120 (10) ◽  
pp. 2835-2845
Author(s):  
W.G. Damen ◽  
L.A. van Grunsven ◽  
A.E. van Loon

The expression of alpha- and beta-tubulin genes during the early development of the marine mollusk Patella vulgata has been investigated. From the 32-cell stage onwards, an enhanced expression of both alpha- and beta-tubulin mRNAs was detected in the primary trochoblasts. After one additional cleavage, these cells become cleavage-arrested and then form cilia. They are the first cells to differentiate during Patella development. Later, alpha- and beta-tubulin mRNA is also found in the accessory and secondary trochoblasts. Together these three cell-lines form the prototroch, the ciliated locomotory organ of the trochophore larva. The early and abundant expression of tubulin genes precede and accompany cilia formation in the trochoblasts and provides us with an excellent molecular differentiation marker for these cells. Apart from the trochoblasts, tubulin gene expression was also found in other cells at some stages. At the 88-cell stage, elevated tubulin mRNA levels were found around the large nucleus of the mesodermal stem cell 4d. In later stages, tubulin gene expression was detected in the cells that form the flagella of the apical tuft and in the refractive bodies. An alpha-tubulin gene was isolated and characterized. A lacZ fusion gene under control of the 5′ upstream region of this tubulin gene was microinjected into embryos at the two-cell stage. The reporter gene product was only detected in the three trochoblast cell-lines at the same time as tubulin genes were expressed in these cells. Reporter gene product was not detected in any other cells. Thus, this 5′ upstream region of this alpha-tubulin gene contains all the elements required for the correct spatiotemporal pattern of expression.


1995 ◽  
Vol 15 (9) ◽  
pp. 5173-5179 ◽  
Author(s):  
L Gu ◽  
J Gaertig ◽  
L A Stargell ◽  
M A Gorovsky

Mammalian cells regulate tubulin mRNA abundance by a posttranscriptional mechanism dependent on the concentration of tubulin monomer. Treatment of mammalian cells with microtubule-depolymerizing drugs and microtubule-polymerizing drugs causes decreases and increases in tubulin mRNA, respectively (D. W. Cleveland, Curr. Opin. Cell Biol. 1:10-14, 1989). In striking contrast to the case with mammalian cells, perturbation of microtubules in Tetrahymena thermophila by microtubule-depolymerizing or -polymerizing drugs increases the level of the single alpha-tubulin gene message by increasing transcription (L. A. Stargell, D. P. Heruth, J. Gaertig, and M. A. Gorovsky, Mol. Cell. Biol. 12:1443-1450, 1992). In this report we show that antimicrotubule drugs preferentially induce the expression of one of two beta-tubulin genes (BTU1) in T. thermophila. In contrast, deciliation induces expression of both beta-tubulin genes. Tubulin gene expression was examined in a mutant strain created by transformation with an in vitro-mutagenized beta-tubulin gene that conferred resistance to microtubule-depolymerizing drugs and sensitivity to the polymerizing drug taxol and in a strain containing a nitrosoguanidine-induced mutation in the single alpha-tubulin gene that conferred the same pattern of drug sensitivities. In both cases the levels of tubulin mRNA expression from the drug-inducible BTU1 gene in the mutant cells paralleled the altered growth sensitivities to microtubule drugs. These studies demonstrate that T. thermophila has distinct, gene-specific mechanisms for modulating tubulin gene expression depending on whether ciliary or cytoplasmic microtubules are involved. They also show that the cytoplasmic microtubule cytoskeleton itself participates in a signal transduction pathway that regulates specific tubulin gene transcription in T. thermophila.


1993 ◽  
Vol 106 (1) ◽  
pp. 209-218 ◽  
Author(s):  
S.W. James ◽  
C.D. Silflow ◽  
P. Stroom ◽  
P.A. Lefebvre

A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii was isolated by using the amiprophos-methyl-resistant mutation apm1-18 as a background to select new mutants that showed increased resistance to the drug. The upA12 mutation caused twofold resistance to amiprophos-methyl and oryzalin, and twofold hypersensitivity to the microtubule-stabilizing drug taxol, suggesting that the mutation enhanced microtubule stability. The resistance mutation was semi-dominant and mapped to the same interval on linkage group III as the alpha 1-tubulin gene. Two-dimensional gel immunoblots of proteins in the mutant cells revealed two electrophoretically altered alpha-tubulin isoforms, one of which was acetylated and incorporated into microtubules in the axoneme. The mutant isoforms co-segregated with the drug-resistance phenotypes when mutant upA12 was backcrossed to wild-type cells. Two-dimensional gel analysis of in vitro translation products showed that the non-acetylated variant alpha-tubulin was a primary gene product. DNA sequence analysis of the alpha 1-tubulin genes from mutant and wild-type cells revealed a single missense mutation, which predicted a change in codon 24 from tyrosine in wild type to histidine in mutant upA12. This alteration in the predicted amino acid sequence corroborated the approximately +1 basic charge shift observed for the variant alpha-tubulins. The mutant allele of the alpha 1-tubulin gene was designated tua1-1.


1987 ◽  
Vol 7 (12) ◽  
pp. 4238-4246
Author(s):  
Z Y Gong ◽  
B P Brandhorst

Deciliation by hypertonic shock of embryos of the sea urchin Lytechinus pictus resulted in an increase in synthesis of alpha- and beta-tubulins, the consequence of an increased concentration of RNA encoding the tubulins. RNA run-on assays in isolated nuclei indicated that this response is due to a transient increase in the rate of synthesis of tubulin RNA beginning within 5 min of deciliation. This enhancement of tubulin gene transcription also occurred in deciliated embryos treated with the microtubule-depolymerizing agent colcemid; thus the reaction to deciliation is not a response to a reduction in concentration of unpolymerized tubulin utilized for ciliogenesis. In deciliated embryos treated with colcemid, the elevated level of tubulin RNA declined rapidly, due to its destabilization by the elevated concentration of unpolymerized tubulin. The increased transcription of tubulin genes is a response to the loss of cilia, not to the hypertonic shock, and occurs even when cilium regeneration is prevented. Inhibition of protein synthesis with puromycin or emetine did not prevent the transcriptional enhancement but stabilized tubulin mRNA, resulting in increased accumulation of tubulin mRNA after deciliation.


2007 ◽  
Vol 97 (2) ◽  
pp. 47-65 ◽  
Author(s):  
Rodney J. Scott ◽  
Gerald J. Gastony ◽  
Jeremy W. Weatherford ◽  
Takuya Nakazato

1985 ◽  
Vol 5 (9) ◽  
pp. 2389-2398 ◽  
Author(s):  
C D Silflow ◽  
R L Chisholm ◽  
T W Conner ◽  
L P Ranum

Full-length cDNA clones corresponding to the transcripts of the two alpha-tubulin genes in Chlamydomonas reinhardi were isolated. DNA sequence analysis of the cDNA clones and cloned gene fragments showed that each gene contains 1,356 base pairs of coding sequence, predicting alpha-tubulin products of 451 amino acids. Of the 27 nucleotide differences between the two genes, only two result in predicted amino acid differences between the two gene products. In the more divergent alpha 2 gene, a leucine replaces an arginine at amino acid 308, and a valine replaces a glycine at amino acid 366. The results predicted that two alpha-tubulin proteins with different net charges are produced as primary gene products. The predicted amino acid sequences are 86 and 70% homologous with alpha-tubulins from rat brain and Schizosaccharomyces pombe, respectively. Each gene had two intervening sequences, located at identical positions. Portions of an intervening sequence highly conserved between the two beta-tubulin genes are also found in the second intervening sequence of each of the alpha genes. These results, together with our earlier report of the beta-tubulin sequences in C. reinhardi, present a picture of the total complement of genetic information for tubulin in this organism.


1998 ◽  
Vol 18 (8) ◽  
pp. 4620-4628 ◽  
Author(s):  
Carlos López-Estraño ◽  
Christian Tschudi ◽  
Elisabetta Ullu

ABSTRACT Previous studies have identified a conserved AG dinucleotide at the 3′ splice site (3′SS) and a polypyrimidine (pPy) tract that are required for trans splicing of polycistronic pre-mRNAs in trypanosomatids. Furthermore, the pPy tract of the Trypanosoma brucei α-tubulin 3′SS region is required to specify accurate 3′-end formation of the upstream β-tubulin gene and transsplicing of the downstream α-tubulin gene. Here, we employed an in vivo cis competition assay to determine whether sequences other than those of the AG dinucleotide and the pPy tract were required for 3′SS identification. Our results indicate that a minimal α-tubulin 3′SS, from the putative branch site region to the AG dinucleotide, is not sufficient for recognition by thetrans-splicing machinery and that polyadenylation is strictly dependent on downstream trans splicing. We show that efficient use of the α-tubulin 3′SS is dependent upon the presence of exon sequences. Furthermore, β-tubulin, but not actin exon sequences or unrelated plasmid sequences, can replace α-tubulin exon sequences for accurate trans-splice-site selection. Taken together, these results support a model in which the informational content required for efficient trans splicing of the α-tubulin pre-mRNA includes exon sequences which are involved in modulation of trans-splicing efficiency. Sequences that positively regulate trans splicing might be similar tocis-splicing enhancers described in other systems.


1992 ◽  
Vol 12 (4) ◽  
pp. 1443-1450
Author(s):  
L A Stargell ◽  
D P Heruth ◽  
J Gaertig ◽  
M A Gorovsky

In cultured mammalian cells, an increase in the amount of tubulin monomer due to treatment with a microtubule-depolymerizing agent results in a rapid decline in tubulin synthesis. This autoregulatory response is mediated through a posttranscriptional mechanism which decreases the stability of tubulin message with no change in transcriptional activity of tubulin genes. Conversely, treatment with a microtubule-polymerizing drug, such as taxol, results in a slight increase in the synthesis of tubulin. Surprisingly, we find that two microtubule-depolymerizing agents, colchicine and oryzalin, actually cause an increase in alpha-tubulin synthesis and alpha-tubulin message in starved Tetrahymena thermophila. This increase is paralleled by an increase in transcription of alpha-tubulin sequences measured by run-on transcription, while the half-life of tubulin message measured by decay in the presence of actinomycin D does not change appreciably. Treatment of starved cells with taxol also produces an increase in alpha-tubulin synthesis via an increase in message abundance due to an increase in transcription of the alpha-tubulin gene. These results indicate that tubulin synthesis in T. thermophila is regulated very differently than in cultured mammalian cells.


1992 ◽  
Vol 103 (3) ◽  
pp. 643-651
Author(s):  
Y.Q. Jiang ◽  
M.M. Oblinger

Mammalian peripheral and central neurons differ considerably in the composition and properties of their axonal cytoskeletons. Recent reports of the selective expression of a high molecular weight (HMW) tau protein in neurons with peripherally projecting axons have furthered the idea that the microtubules in central and peripheral neurons are disparate. In the present study, we examined the possibility that the various tubulin genes are differentially expressed in central versus peripheral neurons. To examine this, we compared the expression of four of the beta-tubulin mRNAs (classes beta I, beta II, beta III, beta IV) and the alpha 1-tubulin mRNA in rat dorsal root ganglion (DRG) neurons with their expression in cerebral cortex during postnatal development (P5-90), using northern blots and in situ hybridization. We document both similarities and differences in tubulin gene expression in these two regions of the neuraxis during postnatal development. In both DRG and cortex, the expression of the class beta I- and beta II-tubulin mRNAs and the alpha 1-tubulin mRNA was higher at earlier stages of postnatal development than in the adult. However, class beta IV-tubulin mRNA levels increased during cortical development but decreased during DRG postnatal development. The opposite pattern was found for the neuron-specific class beta III-tubulin gene, the mRNA levels of which were high in cortex, at birth and then decreased with increasing postnatal development. In DRG, the beta III-tubulin mRNA levels generally increased during postnatal development. Beta III-tubulin protein levels were examined qualitatively at different developmental stages (5-90 days) by immunoblotting and immunocytochemistry.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document