protein conservation
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Akhil Padarti ◽  
Ofek Belkin ◽  
Johnathan Abou-Fadel ◽  
Jun Zhang

Purpose: The objective of this study is to validate the existence of dual cores within the typical phosphotyrosine binding (PTB) domain and to identify potentially damaging and pathogenic nonsynonymous coding single nuclear polymorphisms (nsSNPs) in the canonical PTB domain of the CCM2 gene that causes cerebral cavernous malformations (CCMs). Methods: The nsSNPs within the coding sequence for PTB domain of human CCM2 gene, retrieved from exclusive database search, were analyzed for their functional and structural impact using a series of bioinformatic tools. The effects of the mutations on tertiary structure of the PTB domain in human CCM2 protein were predicted to examine the effect of the nsSNPs on tertiary structure on PTB Cores. Results: Our mutation analysis, through alignment of protein structures between wildtype CCM2 and mutant, indicated that the structural impacts of pathogenic nsSNPs is biophysically limited to only the spatially adjacent substituted amino acid site with minimal structural influence on the adjacent core of the PTB domain, suggesting both cores are independently functional and essential for proper CCM2 function. Conclusion: Utilizing a combination of protein conservation and structure-based analysis, we analyzed the structural effects of inherited pathogenic mutations within the CCM2 PTB domain. Our results indicated that the pathogenic amino acid substitutions lead to only subtle changes locally confined to the surrounding tertiary structure of the PTB core within which it resides, while no structural disturbance to the neighboring PTB core was observed, reaffirming the presence of dual functional cores in the PTB domain.


2021 ◽  
Author(s):  
Yanhua Shi ◽  
Weiping Lin ◽  
Guohui Wang ◽  
Punan Zhao ◽  
Guo-hua Huang ◽  
...  

Abstract Analysis of orthology is important for understanding protein conservation, function and phylogenomics. This study performed a comprehensive identification of Ascoviridae orthology based on identification of 366 ascoviridae protein homologue groups and phylogenetic analysis of 34 non-single copy proteins. Our fondings revealed 90 newly annotated proteins, five new identified Ascoviridae core proteins and 14 Ascovirus core proteins. Moreover, a phylogenomic tree of 11 ascoviridae species was inferred based on the concatenation of 35 of 45 Ascoviridae ortholog groups. In combination with phosphoproteomic results and conservation estimations, 30 conserved phosphorylation sites on 17 phosphoproteins were identified from a total of 176 phosphosites on 57 phosphoproteins from Heliothis virescens ascovirus 3h (HvAV-3h), supplying potential research targets for exploration of the detailed role of these protein in the regulation of viral infection mechanisms. This study would facilitates further Ascoviridae genome annotation and comparison and other functional genomic investigations.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12231
Author(s):  
Sergey Matveevsky ◽  
Tatiana Grishaeva

The evolution of proteins can be accompanied by changes not only to their amino acid sequences, but also their structural and spatial molecular organization. Comparison of the protein conservation within different taxonomic groups (multifunctional, or highly specific) allows to clarify their specificity and the direction of evolution. Two multifunctional enzymes, cyclin-dependent kinase 2 (CDK2) and BRCA1 ubiquitin ligase, that are partners in some mitotic and meiotic processes were investigated in the present work. Two research methods, bioinformatics and immunocytochemical, were combined to examine the conservation levels of the two enzymes. It has been established that CDK2 is a highly conserved protein in different taxonomic lineages of the eukaryotic tree. Immunocytochemically, a conserved CDK2 pattern was revealed in the meiotic autosomes of five rodent species and partially in domestic turkey and clawed frog. Nevertheless, variable CDK2 distribution was detected at the unsynapsed segments of the rodent X chromosomes. BRCA1 was shown to be highly conserved only within certain mammalian taxa. It was also noted that in those rodent nuclei, where BRCA1 specifically binds to antigens, asynaptic regions of sex chromosomes were positive. BRCA1 staining was not always accompanied by specific binding, and a high nonspecificity in the nucleoplasm was observed. Thus, the studies revealed different conservation of the two enzymes at the level of protein structure as well as at the level of chromosome behavior. This suggests variable rates of evolution due to both size and configuration of the protein molecules and their multifunctionality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Thayne Woycinck Kowalski ◽  
Gabriela Barreto Caldas-Garcia ◽  
Julia do Amaral Gomes ◽  
Lucas Rosa Fraga ◽  
Lavínia Schuler-Faccini ◽  
...  

The identification of thalidomide–Cereblon-induced SALL4 degradation has brought new understanding for thalidomide embryopathy (TE) differences across species. Some questions, however, regarding species variability, still remain. The aim of this study was to detect sequence divergences between species, affected or not by TE, and to evaluate the regulated gene co-expression in a murine model. Here, we performed a comparative analysis of proteins experimentally established as affected by thalidomide exposure, evaluating 14 species. The comparative analysis, regarding synteny, neighborhood, and protein conservation, was performed in 42 selected genes. Differential co-expression analysis was performed, using a publicly available assay, GSE61306, which evaluated mouse embryonic stem cells (mESC) exposed to thalidomide. The comparative analyses evidenced 20 genes in the upstream neighborhood of NOS3, which are different between the species who develop, or not, the classic TE phenotype. Considering protein sequence alignments, RECQL4, SALL4, CDH5, KDR, and NOS2 proteins had the biggest number of variants reported in unaffected species. In co-expression analysis, Crbn was a gene identified as a driver of the co-expression of other genes implicated in genetic, non-teratogenic, limb reduction defects (LRD), such as Tbx5, Esco2, Recql4, and Sall4; Crbn and Sall4 were shown to have a moderate co-expression correlation, which is affected after thalidomide exposure. Hence, even though the classic TE phenotype is not identified in mice, a deregulatory Crbn-induced mechanism is suggested in this animal. Functional studies are necessary, especially evaluating the genes responsible for LRD syndromes and their interaction with thalidomide–Cereblon.


2020 ◽  
Vol 48 (17) ◽  
pp. 9462-9477
Author(s):  
Brendan Veeneman ◽  
Ying Gao ◽  
Joy Grant ◽  
David Fruhling ◽  
James Ahn ◽  
...  

Abstract CRISPR/Cas9 functional genomic screens have emerged as essential tools in drug target discovery. However, the sensitivity of available genome-wide CRISPR libraries is impaired by guides which inefficiently abrogate gene function. While Cas9 cleavage efficiency optimization and essential domain targeting have been developed as independent guide design rationales, no library has yet combined these into a single cohesive strategy to knock out gene function. Here, in a massive reanalysis of CRISPR tiling data using the most comprehensive feature database assembled, we determine which features of guides and their targets best predict activity and how to best combine them into a single guide design algorithm. We present the ProteIN ConsERvation (PINCER) genome-wide CRISPR library, which for the first time combines enzymatic efficiency optimization with conserved length protein region targeting, and also incorporates domains, coding sequence position, U6 termination (TTT), restriction sites, polymorphisms and specificity. Finally, we demonstrate superior performance of the PINCER library compared to alternative genome-wide CRISPR libraries in head-to-head validation. PINCER is available for individual gene knockout and genome-wide screening for both the human and mouse genomes.


Pathogens ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 584 ◽  
Author(s):  
Eric Dumonteil ◽  
Claudia Herrera

The ongoing SARS-CoV-2 pandemic has triggered multiple efforts for serological tests and vaccine development. Most of these tests and vaccines are based on the Spike glycoprotein (S) or the Nucleocapsid (N) viral protein. Conservation of these antigens among viral strains is critical to ensure optimum diagnostic test performance and broad protective efficacy, respectively. We assessed N and S antigen diversity from 17,853 SARS-CoV-2 genome sequences and evaluated selection pressure. Up to 6–7 incipient phylogenetic clades were identified for both antigens, confirming early variants of the S antigen and identifying new ones. Significant diversifying selection was detected at multiple sites for both antigens. Some sequence variants have already spread in multiple regions, in spite of their low frequency. In conclusion, the N and S antigens of SARS-CoV-2 are well-conserved antigens, but new clades are emerging and may need to be included in future diagnostic and vaccine formulations.


Author(s):  
Eric Dumonteil ◽  
Claudia Herrera

AbstractThe ongoing SARS-CoV-2 pandemic has triggered multiple efforts for serological tests and vaccine development. Most of these tests and vaccines are based on the Spike glycoprotein (S) or the Nucleocapsid (N) viral protein. Conservation of these antigens among viral strains is critical to ensure optimum diagnostic test performance and broad protective efficacy, respectively. We assessed N and S antigen diversity from 17,853 SARS-CoV-2 genome sequences and evaluated selection pressure. Up to 6-7 incipient phylogenetic clades were identified for both antigens, confirming early variants of the S antigen and identifying new ones. Significant diversifying selection was detected at multiple sites for both antigens. Some sequence variants have already spread in multiple regions, in spite of their low frequency. In conclusion, the N and S antigens of SARS-CoV-2 are well conserved antigens, but new clades are emerging and may need to be included in future diagnostic and vaccine formulations.


2020 ◽  
Author(s):  
Hodaya Beer ◽  
Dana Sherill-Rofe ◽  
Irene Unterman ◽  
Idit Bloch ◽  
Mendel Isseroff ◽  
...  

Cross-species protein conservation patterns, as directed by natural selection, are indicative of the interplay between protein function, protein-protein interaction and evolution. Since the beginning of the genomic era, proteins were characterized as either conserved or not conserved. This simple classification became archaic and cursory once data on protein orthologs became available for thousands of species. To enrich the language used to describe protein conservation patterns, and to understand their biological significance, we classified 20,294 human proteins against 1096 species. Analyses of the conservation patterns of human proteins in different eukaryotic clades yielded extremely variable and rich patterns that had never been characterized or studied before. Using mathematical classifications, we defined seven conservation motifs: Steps, Critical, Lately Developed, Plateau, Clade Loss, Trait Loss and Gain, which describe the evolution of human proteins. Overall, our work offers novel terms for conservation patterns and defines a new language intended to comprehensively describe protein evolution. This novel terminology enables the classification of proteins based on evolution, reveals aspects of protein evolution, and improves the understanding of protein functions.


2019 ◽  
Vol 10 (1) ◽  
pp. 333-356 ◽  
Author(s):  
Morris F. Maduro

Gene regulatory networks and their evolution are important in the study of animal development. In the nematode, Caenorhabditis elegans, the endoderm (gut) is generated from a single embryonic precursor, E. Gut is specified by the maternal factor SKN-1, which activates the MED → END-1,3 → ELT-2,7 cascade of GATA transcription factors. In this work, genome sequences from over two dozen species within the Caenorhabditis genus are used to identify MED and END-1,3 orthologs. Predictions are validated by comparison of gene structure, protein conservation, and putative cis-regulatory sites. All three factors occur together, but only within the Elegans supergroup, suggesting they originated at its base. The MED factors are the most diverse and exhibit an unexpectedly extensive gene amplification. In contrast, the highly conserved END-1 orthologs are unique in nearly all species and share extended regions of conservation. The END-1,3 proteins share a region upstream of their zinc finger and an unusual amino-terminal poly-serine domain exhibiting high codon bias. Compared with END-1, the END-3 proteins are otherwise less conserved as a group and are typically found as paralogous duplicates. Hence, all three factors are under different evolutionary constraints. Promoter comparisons identify motifs that suggest the SKN-1, MED, and END factors function in a similar gut specification network across the Elegans supergroup that has been conserved for tens of millions of years. A model is proposed to account for the rapid origin of this essential kernel in the gut specification network, by the upstream intercalation of duplicate genes into a simpler ancestral network.


2019 ◽  
Vol 88 ◽  
pp. 35-36
Author(s):  
Thayne W. Kowalski ◽  
Gabriela B.C. Garcia ◽  
Julia A. Gomes ◽  
Laura Neto ◽  
Lucas R. Fraga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document