scholarly journals Amino acid sequence and distribution of mRNA encoding a major skeletal muscle laminin binding protein: an extracellular matrix-associated protein with an unusual COOH-terminal polyaspartate domain.

1988 ◽  
Vol 107 (2) ◽  
pp. 699-705 ◽  
Author(s):  
D O Clegg ◽  
J C Helder ◽  
B C Hann ◽  
D E Hall ◽  
L F Reichardt

Two cDNAs encoding an abundant chicken muscle extracellular matrix (ECM)-associated laminin-binding protein (LBP) have been isolated and sequenced. The predicted primary amino acid sequence includes a probable signal peptide and a site for N-linked glycosylation, but lacks a hydrophobic segment long enough to span the membrane. The COOH terminus consists of an unusual repeat of 33 consecutive aspartate residues. Comparison with other sequences indicates that this protein is different from previously described LBPs and ECM receptors. RNA blot analysis of LBP gene expression showed that LBP mRNA was abundant in skeletal and heart muscle, but barely detectable in other tissues. Blots of chicken genomic DNA suggest that a single gene encodes this LBP. The amino acid sequence and mRNA distribution are consistent with the biochemical characterization described by Hall and co-workers (Hall, D. E., K. A. Frazer, B. C. Hahn, and L. F. Reichardt. 1988. J. Cell Biol. 107:687-697). These analyses indicate that LBP is an abundant ECM-associated muscle protein with an unusually high negative charge that interacts with both membranes and laminin, and has properties of a peripheral, not integral membrane protein. Taken together, our studies show that muscle LBP is a secreted, peripheral membrane protein with an unusual polyaspartate domain. Its laminin and membrane binding properties suggest that it may help mediate muscle cell interactions with the extracellular matrix. We propose the name "aspartactin" for this LBP.

1988 ◽  
Vol 107 (2) ◽  
pp. 687-697 ◽  
Author(s):  
D E Hall ◽  
K A Frazer ◽  
B C Hann ◽  
L F Reichardt

A major laminin-binding protein (LBP), distinct from previously described LBPs, has been isolated from chick and rat skeletal muscle (Mr 56,000 and 66,000, respectively). The purified LBPs from the two species were shown to be related antigenically and to have similar NH2-terminal amino acid sequences and total amino acid compositions. Protein blots using laminin and laminin fragments provided evidence that this LBP interacts with the major heparin-binding domain, E3, of laminin. Studies on the association of this LBP with muscle membrane fractions and reconstituted lipid vesicles indicate that this protein can interact with lipid bilayers and has properties of a peripheral, not an integral membrane protein. These properties are consistent with its amino acid sequence, determined from cDNAs (Clegg et al., 1988). Examination by light and electron microscopy of the LBP antigen distribution in skeletal muscle indicated that the protein is localized primarily extracellularly, near the extracellular matrix and myotube plasmalemma. While a form of this LBP has been identified in heart muscle, it is present at low or undetectable levels in other tissues examined by immunocytochemistry indicating that it is probably a muscle-specific protein. As this protein is localized extracellularly and can bind to both membranes and laminin, it may mediate myotube interactions with the extracellular matrix.


1999 ◽  
Vol 337 (3) ◽  
pp. 551-558 ◽  
Author(s):  
Abhijit GHOSH ◽  
Keya BANDYOPADHYAY ◽  
Labanyamoy KOLE ◽  
Pijush K. DAS

Extracellular matrix (ECM)-binding proteins on the surface of Leishmania are thought to play a crucial role in the onset of leishmaniasis, as these parasites invade mononuclear phagocytes in various organs after migrating through the ECM. In a previous report, we presented several lines of evidence suggesting that Leishmania has a specific receptor for laminin, a major ECM protein, with a Kd in the nanomolar range. Here we describe the identification, purification and biochemical characterization of the Leishmania laminin receptor. When the outer membrane proteins of L. donovani were blotted on to nitrocellulose paper and probed with laminin, a prominent laminin-binding protein of 67 kDa was identified. The purified protein was isolated by a three-step process involving DEAE–cellulose, Con A (concanavalin A)–Sepharose and laminin–Sepharose affinity chromatography and was used to raise a monospecific antibody. The same protein was obtained when parasite membrane extracts were adsorbed to antibody affinity matrix and eluted with glycine. The affinity-purified protein bound to laminin in a detergent-solubilized form as well as after integration into artificial bilayers, and was subsequently characterized as an integral membrane protein. Metaperiodate oxidation and metabolic inhibition of glycosylation studies indicate the binding protein to be glycoprotein in nature and that N-linked oligosaccharides play a part in the interaction of laminin with the binding protein. Surface-labelled parasites attached to microtitre wells coated with laminin and the 67 kDa protein blocked the adhesion to laminin substrate. We propose that the 67 kDa protein is an adhesin involved in the attachment of Leishmaniato host tissues.


Reproduction ◽  
2000 ◽  
pp. 137-142 ◽  
Author(s):  
C Zhang ◽  
E Duan ◽  
Y Cao ◽  
G Jiang ◽  
G Zeng

Mouse embryo implantation depends on the complex interaction between the embryo trophoblast cells and the uterine environment, which deposits an extracellular matrix with abundant amounts of laminin. Intrauterine injection and blastocyst or ectoplacental cone culture models were used to study the effect of 32/67 kDa laminin-binding protein antibody on mouse embryo implantation in vivo and in vitro. Intrauterine injection of 32/67 kDa laminin-binding protein antibody (0.4 mg in 1 ml Ham's F-10 medium, 5 microl per mouse) into the left uterine horns of mice (n = 22) on day 3 of pregnancy inhibited embryo implantation significantly (P < 0.001) compared with the contralateral horns that had been injected with normal rabbit IgG. A continuous section study on day 5 after injection showed that the embryos in the control uteri implanted normally and developed healthily, but there were no embryos or the remaining embryos had disintegrated in the uteri injected with 32/67 kDa laminin-binding protein antibody. Blastocysts or ectoplacental cones were cultured in media containing 32/67 kDa laminin-binding protein antibody (0.2 mg ml(-1)) on laminin-coated dishes with normal rabbit IgG at the same concentration as in the controls. The 32/67 kDa laminin-binding protein had no effect on blastocyst or ectoplacental cone attachment, but prohibited the blastocyst or ectoplacental cone outgrowth and primary or secondary trophoblast giant cell migration. These results indicate that 32/67 kDa laminin-binding protein antibody blocked mouse embryo implantation by preventing embryo trophoblast cell invasion and migration through the uterine decidual basement membrane-like extracellular matrix which has a high laminin content.


1991 ◽  
Vol 261 (4) ◽  
pp. F688-F695
Author(s):  
B. S. Weeks ◽  
J. B. Kopp ◽  
S. Horikoshi ◽  
F. B. Cannon ◽  
M. Garrett ◽  
...  

Mesangial cells are centrally located pericytes in the renal glomerulus. They are surrounded by an extracellular matrix and directly contact the glomerular basement membrane in vivo. Because these interactions are critical for renal development and function, we have studied human mesangial cell interactions with laminin, a major adhesive component of basement membranes present in the extracellular matrix of the mesangium. Human fetal and adult mesangial cell attachment was stimulated by both laminin and the laminin-derived synthetic peptides YIGSR-NH2, CQAGTFALRGDNPQG-NH2, and CIKVAVS-NH2. Furthermore, mesangial cells spread on laminin as well as on both the RGD-containing and CIKVAVS peptides. When added in solution, all three peptides inhibited mesangial cell attachment to laminin, and the latter two peptides inhibited mesangial cell spreading on laminin. Laminin affinity column chromatography demonstrated several low-molecular-mass laminin-binding proteins ranging from between 35 and 42 kDa, which predominated in fetal mesangial cells, whereas a higher molecular mass laminin-binding protein of 65 kDa was predominant in adult mesangial cells. Western blot analysis with an anti-32-kDa laminin-binding protein antibody showed increased expression of both 31- and 42-kDa proteins in fetal mesangial cells when compared with the adult. The antisera to the 32-kDa laminin-binding protein also inhibited fetal mesangial spreading on the CIKVAVS peptide. Western blot analysis with an anti-67-kDa laminin-binding protein antibody revealed a 110-kDa protein in adult mesangial cells that was not present in fetal mesangial cells.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document