scholarly journals The role of cyclin B in meiosis I.

1989 ◽  
Vol 108 (4) ◽  
pp. 1431-1444 ◽  
Author(s):  
J M Westendorf ◽  
K I Swenson ◽  
J V Ruderman

In clams, fertilization is followed by the prominent synthesis of two cyclins, A and B. During the mitotic cell cycles, the two cyclins are accumulated and then destroyed near the end of each metaphase. Newly synthesized cyclin B is complexed with a small set of other proteins, including a kinase that phosphorylates cyclin B in vitro. While both cyclins can act as general inducers of entry into M phase, the two are clearly distinguished by their amino acid sequences (70% nonidentity) and by their different modes of expression in oocytes and during meiosis. In contrast to cyclin A, which is stored solely as maternal mRNA, oocytes contain a stockpile of cyclin B protein, which is stored in large, rapidly sedimenting aggregates. Fertilization results in the release of cyclin B to a more disperse, soluble form. Since the first meiotic division in clams can proceed even when new protein synthesis is blocked, these results strongly suggest it is the fertilization-triggered unmasking of cyclin B protein that drives cells into meiosis I. We propose that the unmasking of maternal cyclin B protein allows it to interact with cdc2 protein kinase, which is also stored in oocytes, and that the formation of this cyclin B/cdc2 complex generates active M phase-promoting factor.

1992 ◽  
Vol 116 (3) ◽  
pp. 707-724 ◽  
Author(s):  
T Hunt ◽  
F C Luca ◽  
J V Ruderman

Fertilization of clam oocytes initiates a series of cell divisions, of which the first three--meiosis I, meiosis II, and the first mitotic division--are highly synchronous. After fertilization, protein synthesis is required for the successful completion of every division except meiosis I. When protein synthesis is inhibited, entry into meiosis I and the maintenance of M phase for the normal duration of meiosis occur normally, but the chromosomes fail to interact correctly with the spindle in meiosis II metaphase. By contrast, inhibition of protein synthesis immediately after completion of meiosis or mitosis stops cells entering the next mitosis. We describe the behavior of cyclins A and B in relation to these "points of no return." The cyclins are synthesized continuously and are rapidly destroyed shortly before the metaphase-anaphase transition of the mitotic cell cycles, with cyclin A being degraded in advance of cyclin B. Cyclin destruction normally occurs during a 5-min window in mitosis, but in the monopolar mitosis that occurs after parthenogenetic activation of clam oocytes, or when colchicine is added to fertilized eggs about to enter first mitosis, the destruction of cyclin B is strongly delayed, whereas proteolysis of cyclin A is maintained in an activated state for the duration of metaphase arrest. Under either of these abnormal conditions, inhibition of protein synthesis causes a premature return to interphase that correlates with the time when cyclin B disappears.


1991 ◽  
Vol 11 (4) ◽  
pp. 1965-1971 ◽  
Author(s):  
J E Ferrell ◽  
M Wu ◽  
J C Gerhart ◽  
G S Martin

We have examined the time course of protein tyrosine phosphorylation in the meiotic cell cycles of Xenopus laevis oocytes and the mitotic cell cycles of Xenopus eggs. We have identified two proteins that undergo marked changes in tyrosine phosphorylation during these processes: a 42-kDa protein related to mitogen-activated protein kinase or microtubule-associated protein-2 kinase (MAP kinase) and a 34-kDa protein identical or related to p34cdc2. p42 undergoes an abrupt increase in its tyrosine phosphorylation at the onset of meiosis 1 and remains tyrosine phosphorylated until 30 min after fertilization, at which point it is dephosphorylated. p42 also becomes tyrosine phosphorylated after microinjection of oocytes with partially purified M-phase-promoting factor, even in the presence of cycloheximide. These findings suggest that MAP kinase, previously implicated in the early responses of somatic cells to mitogens, is also activated at the onset of meiotic M phase and that MAP kinase can become tyrosine phosphorylated downstream from M-phase-promoting factor activation. We have also found that p34 goes through a cycle of tyrosine phosphorylation and dephosphorylation prior to meiosis 1 and mitosis 1 but is not detectable as a phosphotyrosyl protein during the 2nd through 12th mitotic cell cycles. It may be that the delay between assembly and activation of the cyclin-p34cdc2 complex that p34cdc2 tyrosine phosphorylation provides is not needed in cell cycles that lack G2 phases. Finally, an unidentified protein or group of proteins migrating at 100 to 116 kDa increase in tyrosine phosphorylation throughout maturation, are dephosphorylated or degraded within 10 min of fertilization, and appear to cycle between low-molecular-weight forms and high-molecular-weight forms during early embryogenesis.


2019 ◽  
Author(s):  
Xiaofei Ma ◽  
Jan Inge Øvrebø ◽  
Eric M Thompson

AbstractThe active site of the essential, eukaryotic CDK1 kinase is generated by core structural elements, among which the PSTAIRE motif in the critical αC-helix, is universally conserved in metazoans. The CDK2 kinase, sharing the PSTAIRE, arose early in metazoan evolution and permitted subdivision of tasks along the S-M-phase axis. The marine chordate, Oikopleura dioica, is the only metazoan known to possess more than a single CDK1 ortholog, and all of its 5 paralogs show sequence divergences in the PSTAIRE. Through assessing CDK1 gene duplications in the appendicularian lineage, we show that the CDK1 activation loop substrate binding platform, ATP entrance site, hinge region, and main Cyclin binding interface, have all diversified under positive selection. Three of the 5 CDK1 paralogs are required for embryonic divisions and knockdown phenotypes illustrate further subdivision of functions along the S-M-phase axis. In parallel to CDK1 gene duplications, there has also been amplification in the Cyclin B complement. Among these, the CDK1d:Cyclin Ba pairing is required for oogenic meiosis and early embryogenesis and shows evidence of coevolution of an exclusive interaction. In an intriguing twist on the general rule that Cyclin B oscillations on a background of stable CDK1 levels regulate M-phase MPF activity, it is CDK1d protein levels that oscillate, rather than Cyclin Ba levels, to drive rapid, early embryonic cell cycles. Strikingly, the modified PSTAIRE of odCDK1d shows convergence over great evolutionary distance with plant CDKB, and in both O. dioica, and plants, these variants exhibit increased specialization to M-phase.


1998 ◽  
Vol 111 (12) ◽  
pp. 1751-1757 ◽  
Author(s):  
A. Abrieu ◽  
T. Brassac ◽  
S. Galas ◽  
D. Fisher ◽  
J.C. Labbe ◽  
...  

We have investigated whether Plx1, a kinase recently shown to phosphorylate cdc25c in vitro, is required for activation of cdc25c at the G2/M-phase transition of the cell cycle in Xenopus. Using immunodepletion or the mere addition of an antibody against the C terminus of Plx1, which suppressed its activation (not its activity) at G2/M, we show that Plx1 activity is required for activation of cyclin B-cdc2 kinase in both interphase egg extracts receiving recombinant cyclin B, and cycling extracts that spontaneously oscillate between interphase and mitosis. Furthermore, a positive feedback loop allows cyclin B-cdc2 kinase to activate Plx1 at the G2/M-phase transition. In contrast, activation of cyclin A-cdc2 kinase does not require Plx1 activity, and cyclin A-cdc2 kinase fails to activate Plx1 and its consequence, cdc25c activation in cycling extracts.


1995 ◽  
Vol 15 (12) ◽  
pp. 7143-7151 ◽  
Author(s):  
K S Lee ◽  
Y L Yuan ◽  
R Kuriyama ◽  
R L Erikson

PLK (STPK13) encodes a murine protein kinase closely related to those encoded by the Drosophila melanogaster polo gene and the Saccharomyces cerevisiae CDC5 gene, which are required for normal mitotic and meiotic divisions. Affinity-purified antibody generated against the C-terminal 13 amino acids of Plk specifically recognizes a single polypeptide of 66 kDa in MELC, NIH 3T3, and HeLa cellular extracts. The expression levels of both poly(A)+ PLK mRNA and its encoded protein are most abundant about 17 h after serum stimulation of NIH 3T3 cells. Plk protein begins to accumulate at the S/G2 boundary and reaches the maximum level at the G2/M boundary in continuously cycling cells. Concurrent with cyclin B-associated cdc2 kinase activity, Plk kinase activity sharply peaks at the onset of mitosis. Plk enzymatic activity gradually decreases as M phase proceeds but persists longer than cyclin B-associated cdc2 kinase activity. Plk is localized to the area surrounding the chromosomes in prometaphase, appears condensed as several discrete bands along the spindle axis at the interzone in anaphase, and finally concentrates at the midbody during telophase and cytokinesis. Plk and CHO1/mitotic kinesin-like protein 1 (MKLP-1), which induces microtubule bundling and antiparallel movement in vitro, are colocalized during late M phase. In addition, CHO1/MKLP-1 appears to interact with Plk in vivo and to be phosphorylated by Plk-associated kinase activity in vitro.


1991 ◽  
Vol 112 (4) ◽  
pp. 523-533 ◽  
Author(s):  
G Dessev ◽  
C Iovcheva-Dessev ◽  
J R Bischoff ◽  
D Beach ◽  
R Goldman

Cell-free extracts prepared from activated clam oocytes contain factors which induce phosphorylation of the single 67-kD lamin (L67), disassemble clam oocyte nuclei, and cause chromosome condensation in vitro (Dessev, G., R. Palazzo, L. Rebhun, and R. Goldman. 1989. Dev. Biol. 131:469-504). To identify these factors, we have fractionated the oocyte extracts. The nuclear lamina disassembly (NLD) activity, together with a protein kinase activity specific for L67, appear as a single peak throughout a number of purification steps. This peak also contains p34cdc2, cyclin B, and histone H1-kinase activity, which are components of the M-phase promoting factor (MPF). The NLD/L67-kinase activity is depleted by exposure of this purified material to Sepharose conjugated to p13suc1, and is restored upon addition of a p34cdc2/p62 complex from HeLa cells. The latter complex phosphorylates L67 and induces NLD in the absence of other clam oocyte proteins. Our results suggest that a single protein kinase activity (p34cdc2-H1 kinase, identical with MPF) phosphorylates the lamin and is involved in the meiotic breakdown of the nuclear envelope in clam oocytes.


1991 ◽  
Vol 11 (8) ◽  
pp. 3860-3867
Author(s):  
T Izumi ◽  
J L Maller

The cdc2 kinase and B-type cyclins are known to be components of maturation- or M-phase-promoting factor (MPF). Phosphorylation of cyclin B has been reported previously and may regulate entry into and exit from mitosis and meiosis. To investigate the role of cyclin B phosphorylation, we replaced putative cdc2 kinase phosphorylation sites in Xenopus cyclins B1 and B2 by using oligonucleotide site-directed mutagenesis. We found that Ser-90 of cyclin B2 and Ser-94 or Ser-96 of cyclin B1 are the main phosphorylation sites both in functional Xenopus egg extracts and after phosphorylation with purified MPF in vitro. Microtubule-associated protein (MAP) kinase from Xenopus eggs phosphorylated cyclin B1 significantly at Ser-94 or Ser-96, whereas it was largely inactive against cyclin B2. The substitutions that ablated phosphorylation at these sites, however, resulted in no functional differences between mutant and wild-type cyclin, as judged by the kinetics of M-phase degradation, induction of mitosis in egg extracts, or induction of oocyte maturation. These results indicate that the phosphorylation of Xenopus B-type cyclins by cdc2 kinase or MAP kinase is not required for the hallmark functions of cyclin.


2004 ◽  
Vol 24 (14) ◽  
pp. 6467-6475 ◽  
Author(s):  
Laurent Le Cam ◽  
Matthieu Lacroix ◽  
Maria A. Ciemerych ◽  
Claude Sardet ◽  
Piotr Sicinski

ABSTRACT The ubiquitously expressed E4F protein was originally identified as an E1A-regulated cellular transcription factor required for adenovirus replication. The function of this protein in normal cell physiology remains largely unknown. To address this issue, we generated E4F knockout mice by gene targeting. Embryos lacking E4F die at the peri-implantation stage, while in vitro-cultured E4F−/− blastocysts exhibit defects in mitotic progression, chromosomal missegregation, and increased apoptosis. Consistent with these observations, we found that E4F localizes to the mitotic spindle during the M phase of early embryos. Our results establish a crucial role for E4F during early embryonic cell cycles and reveal an unexpected function for E4F in mitosis.


1992 ◽  
Vol 3 (8) ◽  
pp. 927-939 ◽  
Author(s):  
T Izumi ◽  
D H Walker ◽  
J L Maller

The cdc25 tyrosine phosphatase is known to activate cdc2 kinase in the G2/M transition by dephosphorylation of tyrosine 15. To determine how entry into M-phase in eukaryotic cells is controlled, we have investigated the regulation of the cdc25 protein in Xenopus eggs and oocytes. Two closely related Xenopus cdc25 genes have been cloned and sequenced and specific antibodies generated. The cdc25 phosphatase activity oscillates in both meiotic and mitotic cell cycles, being low in interphase and high in M-phase. Increased activity of cdc25 at M-phase is accompanied by increased phosphorylation that retards electrophoretic mobility in gels from 76 to 92 kDa. Treatment of cdc25 with either phosphatase 1 or phosphatase 2A removes phosphate from cdc25, reverses the mobility shift, and decreases its ability to activate cdc2 kinase. Furthermore, the addition of okadaic acid to egg extracts arrested in S-phase by aphidicolin causes phosphorylation and activation of the cdc25 protein before cyclin B/cdc2 kinase activation. These results demonstrate that the activity of the cdc25 phosphatase at the G2/M transition is directly regulated through changes in its phosphorylation state.


2003 ◽  
Vol 14 (10) ◽  
pp. 4003-4014 ◽  
Author(s):  
James R. A. Hutchins ◽  
Dina Dikovskaya ◽  
Paul R. Clarke

Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.


Sign in / Sign up

Export Citation Format

Share Document