scholarly journals Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity.

1992 ◽  
Vol 3 (8) ◽  
pp. 927-939 ◽  
Author(s):  
T Izumi ◽  
D H Walker ◽  
J L Maller

The cdc25 tyrosine phosphatase is known to activate cdc2 kinase in the G2/M transition by dephosphorylation of tyrosine 15. To determine how entry into M-phase in eukaryotic cells is controlled, we have investigated the regulation of the cdc25 protein in Xenopus eggs and oocytes. Two closely related Xenopus cdc25 genes have been cloned and sequenced and specific antibodies generated. The cdc25 phosphatase activity oscillates in both meiotic and mitotic cell cycles, being low in interphase and high in M-phase. Increased activity of cdc25 at M-phase is accompanied by increased phosphorylation that retards electrophoretic mobility in gels from 76 to 92 kDa. Treatment of cdc25 with either phosphatase 1 or phosphatase 2A removes phosphate from cdc25, reverses the mobility shift, and decreases its ability to activate cdc2 kinase. Furthermore, the addition of okadaic acid to egg extracts arrested in S-phase by aphidicolin causes phosphorylation and activation of the cdc25 protein before cyclin B/cdc2 kinase activation. These results demonstrate that the activity of the cdc25 phosphatase at the G2/M transition is directly regulated through changes in its phosphorylation state.

1995 ◽  
Vol 108 (11) ◽  
pp. 3557-3568 ◽  
Author(s):  
H.D. Lindsay ◽  
M.J. Whitaker ◽  
C.C. Ford

Activation of p34cdc2 kinase is essential for entry into mitosis while subsequent deactivation and cyclin degradation are associated with exit. In Xenopus embryos, both of these phases are regulated by post-translation modifications and occur spontaneously on incubation of extracts prepared late in the first cell cycle. Even though high levels of calcium buffer were initially used to prepare these extracts, we found that free calcium levels in them remained in the observed physiological range (200-500 nM). Further addition of calcium buffers only slightly reduced free calcium levels, but inhibited histone H1 (cdc2A) kinase deactivation and cyclin degradation. Higher buffer concentrations slowed the kinase activation phase. Reducing the free buffer concentration by premixing with calcium reversed the effects of the buffer, indicating that the inhibitory effects arose from the calcium-chelating properties of the buffer rather than non-specific side effects. Furthermore, additions of calcium buffer at the end of the H1 kinase activation phase did not prevent deactivation. From these results, and the order of effectiveness of different calcium buffers in disrupting the H1 kinase cycle, we suggest that local transient increases in free calcium influence the rate of cdc2 kinase activation and are required to initiate the pathway leading to cyclin degradation and kinase inactivation in mitotic cell cycles.


1996 ◽  
Vol 132 (1) ◽  
pp. 125-135 ◽  
Author(s):  
E Okumura ◽  
T Sekiai ◽  
S Hisanaga ◽  
K Tachibana ◽  
T Kishimoto

G2-phase-arrested immature starfish oocytes contain inactive cdc2 kinase and cdc25 phosphatase, and an inactivator for cdc2 kinase. In this system, we have studied how the regulatory balance is apped toward the initial activation of cdc2 kinase. During the hormone-dependent period (Guerrier, P., and M. Doree, 1975. Dev. Biol. 47:341-348), p34cdc2 and cdc25 protein are already converted, though not fully, to active forms, whereas the inactivators for cdc2 kinase and cdc25 phosphatase are able to exhibit their activities if the hormone were removed. We produced "triggered oocytes," in which due to a neutralizing anticdc25 antibody, the activation of cdc2 kinase is prevented out cdc25 protein is phosphorylated slightly after the maturation-inducing hormonal stimulus. In contrast to control immature oocytes, in triggered oocytes the injected cdc2 kinase is not inactivated, and accordingly the level of cdc2 kinase activity required for meiosis reinitiation is much less. These results imply the presence of a cdc2 kinase activity-independent process(es) that suppresses the inactivator for cdc2 kinase and initially phosphorylates cdc25 protein, although this process is reversible during the initial activation of cdc2 kinase. At the most initial triggering of M-phase, the cdc2 kinase activity-independent process might trip the switch leading to the initial activation of cdc2 kinase. Thereafter, in parallel, the cdc2 kinase-dependent feedback loops described by others may cause further increase in cdc2 kinase activity. We propose that a putative suppressor, which downregulates the inactivator for cdc2 kinase independently of nuclear components, might be a previously unrecognized component of maturation-promoting factor.


1991 ◽  
Vol 11 (4) ◽  
pp. 1965-1971 ◽  
Author(s):  
J E Ferrell ◽  
M Wu ◽  
J C Gerhart ◽  
G S Martin

We have examined the time course of protein tyrosine phosphorylation in the meiotic cell cycles of Xenopus laevis oocytes and the mitotic cell cycles of Xenopus eggs. We have identified two proteins that undergo marked changes in tyrosine phosphorylation during these processes: a 42-kDa protein related to mitogen-activated protein kinase or microtubule-associated protein-2 kinase (MAP kinase) and a 34-kDa protein identical or related to p34cdc2. p42 undergoes an abrupt increase in its tyrosine phosphorylation at the onset of meiosis 1 and remains tyrosine phosphorylated until 30 min after fertilization, at which point it is dephosphorylated. p42 also becomes tyrosine phosphorylated after microinjection of oocytes with partially purified M-phase-promoting factor, even in the presence of cycloheximide. These findings suggest that MAP kinase, previously implicated in the early responses of somatic cells to mitogens, is also activated at the onset of meiotic M phase and that MAP kinase can become tyrosine phosphorylated downstream from M-phase-promoting factor activation. We have also found that p34 goes through a cycle of tyrosine phosphorylation and dephosphorylation prior to meiosis 1 and mitosis 1 but is not detectable as a phosphotyrosyl protein during the 2nd through 12th mitotic cell cycles. It may be that the delay between assembly and activation of the cyclin-p34cdc2 complex that p34cdc2 tyrosine phosphorylation provides is not needed in cell cycles that lack G2 phases. Finally, an unidentified protein or group of proteins migrating at 100 to 116 kDa increase in tyrosine phosphorylation throughout maturation, are dephosphorylated or degraded within 10 min of fertilization, and appear to cycle between low-molecular-weight forms and high-molecular-weight forms during early embryogenesis.


1996 ◽  
Vol 109 (1) ◽  
pp. 239-246 ◽  
Author(s):  
A. Abrieu ◽  
T. Lorca ◽  
J.C. Labbe ◽  
N. Morin ◽  
S. Keyse ◽  
...  

Unfertilized frog eggs arrest at the second meiotic metaphase, due to cytostatic activity of the c-mos proto-oncogene (CSF). MAP kinase has been proposed to mediate CSF activity in suppressing cyclin degradation. Using an in vitro assay to generate CSF activity, and recombinant CL 100 phosphatase to inactivate MAP kinase, we confirm that the c-mos proto-oncogene blocks cyclin degradation through MAP kinase activation. We further show that for MAP kinase to suppress cyclin degradation, it must be activated before cyclin B-cdc2 kinase has effectively promoted cyclin degradation. Thus MAP kinase does not inactivate, but rather prevents the cyclin degradation pathway from being turned on. Using a constitutively active mutant of Ca2+/calmodulin dependent protein kinase II, which mediates the effects of Ca2+ at fertilization, we further show that the kinase can activate cyclin degradation in the presence of both MPF and the c-mos proto-oncogene without inactivating MAP kinase.


1998 ◽  
Vol 111 (12) ◽  
pp. 1751-1757 ◽  
Author(s):  
A. Abrieu ◽  
T. Brassac ◽  
S. Galas ◽  
D. Fisher ◽  
J.C. Labbe ◽  
...  

We have investigated whether Plx1, a kinase recently shown to phosphorylate cdc25c in vitro, is required for activation of cdc25c at the G2/M-phase transition of the cell cycle in Xenopus. Using immunodepletion or the mere addition of an antibody against the C terminus of Plx1, which suppressed its activation (not its activity) at G2/M, we show that Plx1 activity is required for activation of cyclin B-cdc2 kinase in both interphase egg extracts receiving recombinant cyclin B, and cycling extracts that spontaneously oscillate between interphase and mitosis. Furthermore, a positive feedback loop allows cyclin B-cdc2 kinase to activate Plx1 at the G2/M-phase transition. In contrast, activation of cyclin A-cdc2 kinase does not require Plx1 activity, and cyclin A-cdc2 kinase fails to activate Plx1 and its consequence, cdc25c activation in cycling extracts.


1992 ◽  
Vol 116 (3) ◽  
pp. 707-724 ◽  
Author(s):  
T Hunt ◽  
F C Luca ◽  
J V Ruderman

Fertilization of clam oocytes initiates a series of cell divisions, of which the first three--meiosis I, meiosis II, and the first mitotic division--are highly synchronous. After fertilization, protein synthesis is required for the successful completion of every division except meiosis I. When protein synthesis is inhibited, entry into meiosis I and the maintenance of M phase for the normal duration of meiosis occur normally, but the chromosomes fail to interact correctly with the spindle in meiosis II metaphase. By contrast, inhibition of protein synthesis immediately after completion of meiosis or mitosis stops cells entering the next mitosis. We describe the behavior of cyclins A and B in relation to these "points of no return." The cyclins are synthesized continuously and are rapidly destroyed shortly before the metaphase-anaphase transition of the mitotic cell cycles, with cyclin A being degraded in advance of cyclin B. Cyclin destruction normally occurs during a 5-min window in mitosis, but in the monopolar mitosis that occurs after parthenogenetic activation of clam oocytes, or when colchicine is added to fertilized eggs about to enter first mitosis, the destruction of cyclin B is strongly delayed, whereas proteolysis of cyclin A is maintained in an activated state for the duration of metaphase arrest. Under either of these abnormal conditions, inhibition of protein synthesis causes a premature return to interphase that correlates with the time when cyclin B disappears.


2000 ◽  
Vol 113 (15) ◽  
pp. 2659-2670 ◽  
Author(s):  
H. Kawahara ◽  
R. Philipova ◽  
H. Yokosawa ◽  
R. Patel ◽  
K. Tanaka ◽  
...  

The proteasome has been shown to be involved in exit from mitosis by bringing about destruction of mitotic cyclins. Here, we present evidence that the proteasome is also required for proper completion of S phase and for entry into mitosis in the sea urchin embryonic cleavage cycle. A series of structurally related peptide-aldehydes prevent nuclear envelope breakdown in their order of inhibitory efficacies against the proteasome. Their efficacies in blocking exit from S phase and exit from mitosis correlate well, indicating that the proteasome is involved at both these steps. Mitotic histone HI kinase activation and tyrosine dephosphorylation of p34(cdc2) kinase are blocked by inhibition of the proteasome, indicating that the proteasome plays an important role in the pathway that leads to embryonic p34(cdc2)kinase activation. Arrested embryos continued to incorporate [(3)H]thymidine and characteristically developed large nuclei. Pre-mitotic arrest can be overcome by treatment with caffeine, a manoeuvre that is known to override the DNA replication checkpoint. These data demonstrate that the proteasome is involved in the control of termination of S phase and consequently in the initiation of M phase of the first embryonic cell cycle.


1999 ◽  
Vol 112 (22) ◽  
pp. 3975-3984
Author(s):  
C. Beckhelling ◽  
C. Penny ◽  
S. Clyde ◽  
C. Ford

Mitosis is governed by the activity of the M-phase promoting factor (MPF). In some systems, particularly early embryos, transient increases in calcium concentration have been shown to be necessary for mitosis and regulate its timing. By microinjection of the calcium buffer, dibromoBAPTA, into fertilised Xenopus eggs, we have assessed whether calcium events are required to initiate MPF activation and inactivation. Since initial experiments showed that this buffer inhibited protein synthesis, we measured when mitosis and cleavage became independent of translation. We found that, after a period of protein synthesis essential for cleavage, there was a phase during which continued translation affected the timing of cleavage, but was not essential for its occurrence. Measurement of MPF activity in single embryos injected with calcium buffer at different times in the first cell cycle, showed that there were two sensitive periods. The first period of sensitivity blocked MPF activation and coincided with the time at which cleavage became completely independent of protein synthesis. The second sensitive period occurred just before histone kinase activity peaked, and was necessary for kinase inactivation. Preventing inactivation in this way arrested egg extracts in mitosis. These results support the view that transient increases in free calcium concentration contribute to mitotic progression by first triggering MPF activation and subsequently, with elevated MPF activity, inducing its inactivation.


1991 ◽  
Vol 11 (8) ◽  
pp. 3860-3867
Author(s):  
T Izumi ◽  
J L Maller

The cdc2 kinase and B-type cyclins are known to be components of maturation- or M-phase-promoting factor (MPF). Phosphorylation of cyclin B has been reported previously and may regulate entry into and exit from mitosis and meiosis. To investigate the role of cyclin B phosphorylation, we replaced putative cdc2 kinase phosphorylation sites in Xenopus cyclins B1 and B2 by using oligonucleotide site-directed mutagenesis. We found that Ser-90 of cyclin B2 and Ser-94 or Ser-96 of cyclin B1 are the main phosphorylation sites both in functional Xenopus egg extracts and after phosphorylation with purified MPF in vitro. Microtubule-associated protein (MAP) kinase from Xenopus eggs phosphorylated cyclin B1 significantly at Ser-94 or Ser-96, whereas it was largely inactive against cyclin B2. The substitutions that ablated phosphorylation at these sites, however, resulted in no functional differences between mutant and wild-type cyclin, as judged by the kinetics of M-phase degradation, induction of mitosis in egg extracts, or induction of oocyte maturation. These results indicate that the phosphorylation of Xenopus B-type cyclins by cdc2 kinase or MAP kinase is not required for the hallmark functions of cyclin.


1991 ◽  
Vol 113 (3) ◽  
pp. 507-514 ◽  
Author(s):  
L M Roy ◽  
K I Swenson ◽  
D H Walker ◽  
B G Gabrielli ◽  
R S Li ◽  
...  

Functional clam cyclin A and B proteins have been produced using a baculovirus expression system. Both cyclin A and B can induce meiosis I and meiosis II in Xenopus in the absence of protein synthesis. Half-maximal induction occurs at 50 nM for cyclin A and 250 nM for cyclin B. Addition of 25 nM cyclin A to activated Xenopus egg extracts arrested in the cell cycle by treatment with RNase or emetine activates cdc2 kinase to the normal metaphase level and stimulates one oscillatory cell cycle. High levels of cyclin A cause marked hyperactivation of cdc2 kinase and a stable arrest at the metaphase point in the cell cycle. Kinetic studies demonstrate the concentration of cyclin A added does not affect the 10 min lag period required for kinase activation or the timing of maximal activity, but does control the rate of deactivation of cdc2 kinase during exit from mitosis. In addition, exogenous clam cyclin A inhibits the degradation of both A- and B-type endogenous Xenopus cyclins. These results define a system for investigating the biochemistry and regulation of cdc2 kinase activation by cyclin A.


Sign in / Sign up

Export Citation Format

Share Document