scholarly journals Characterization and inducibility of hsp 70 proteins in the male mouse germ line.

1990 ◽  
Vol 111 (5) ◽  
pp. 1785-1792 ◽  
Author(s):  
Z F Zakeri ◽  
W J Welch ◽  
D J Wolgemuth

The properties and inducibility of the heat shock protein 70 (hsp 70) gene products were examined during differentiation of mouse testicular cells by one and two-dimensional gel electrophoresis and immunoblotting. Low levels of the 72- and 73-kD heat shock proteins normally found in mouse cell lines were detected in the mouse testis. A novel isoform with a relative molecular mass of 73 kD (called 73T) was also observed, in the presence or absence of heat shock. 73T was shown to be produced by germ cells since it was not detected in testes from mutant mice devoid of germ cells. Furthermore, 73T was found only in adult mouse testicular cells, not in testes from animals that lack meiotic germ cells. 73T was synthesized in enriched cell populations of both meiotic prophase and postmeiotic cells, but was not inducible by in vitro heat shock. In the adult testis, low levels of the bona fide 72-kD heat-inducible (hsp72) were induced in response to elevated temperatures. In contrast, in testes from animals in which only somatic cells and premeiotic germ cells were present, there was a substantial induction of hsp 72. It is suggested that hsp 72 is inducible in the somatic compartment and possibly in the premeiotic germ cells, but not in germ cells which have entered meiosis and which are expressing members of the hsp 70 gene family in a developmentally regulated fashion.

2014 ◽  
Author(s):  
Δημήτριος Λυσίτσας

Εισαγωγή: Η υπερπλασία του έσω χιτώνα παίζει μείζων ρόλο στην επαναστένωση (in-stentrestenosis). Στην παρούσα μελέτη αξιολογήσαμε in vitro την επίδραση της D-24851(κυτταροτοξική ουσία που σταματά τον κυτταρικό κύκλο στο στάδιο G2-M) στονπολλαπλασιασμό των λείων μυϊκών κυττάρων και μελετήσαμε την ασφάλεια και τηνδραστικότητα μίας ενδαγγειακής πρόθεσης (stent) επικαλυμμένης με πολυμερή ουσία πουαπελευθερώνει την D-24851, στην αναστολή της υπερπλασίας του έσω χιτώνα χωρίς ναεμποδίζει την αναγεννητική ικανότητα του ενδοθηλίου σε in vivo πειραματικό μοντέλο.Υλικό και Μέθοδοι: Γυμνά μεταλλικά stent (n=6), stent επικαλυμμένα μόνο με πολυμερήουσία (polymer-coated, n=7) και stent επικαλυμμένα με πολυμερή ουσία πουαπελευθερώνουν 31±1μg (low-dose, n=7), 216±8 μg (high-dose, n=6) ή 1774±39 μg(extreme-dose, n=5) της D-24851 εμφυτεύτηκαν στις μηριαίες αρτηρίες λευκών New Zealandκουνελιών. Τα πειραματόζωα θυσιάστηκαν στις 28 ημέρες για ιστομορφομετρική ανάλυση.Για την αξιολόγηση της ενδοθηλιακής αναγέννησης στις 90 ημέρες, 12 πειραματόζωαχρησιμοποιήθηκαν για την τοποθέτηση polymer-coated (n=3), low dose (n=3), high dose(n=3) or extreme dose (n=3) ενδαγγειακών προθέσεων.Αποτελέσματα: In vitro η D-24851 αναστέλλει την υπερπλασία των λείων μυϊκών κυττάρωνκαι επάγει την απόπτωση τους χωρίς να αυξάνει την επαγωγή της heat shock protein 70(HSP-70), μία κυτταροπροστατευτική και αντι-αποπτωτική πρωτεΐνη. Η θεραπεία με lowdoseD-24851 stents συνδυάστηκε με 38% (P=0.029) μείωση της υπερπλαστικής περιοχήςτου έσω χιτώνα και 35% (P=0.003) μείωση της επι τοις εκατό στένωσης του αυλού σεσύγκριση με τα γυμνά μεταλλικά stents. Ο τραυματισμός και η φλεγμονή του αρτηριακού τοιχώματος δεν παρουσίασαν σημαντικές διαφορές μεταξύ των ομάδων. Τα επικαλυμμέναμόνο με πολυμερή ουσία stents εμφάνισαν παρόμοια ανάπτυξη νεοιστού σε σύγκριση με ταγυμνά μεταλλικά stents. Ωστόσο, όλες οι ομάδες των stents με D-24851 παρουσίασαν ατελήενδοθηλιοποίηση συγκρινόμενα με τα polymer-coated stents.Συμπεράσματα: Οι επικεκαλυμμένες ενδαγγειακές προσθέσεις με πολυμερή ουσία καιχαμηλη δόση D-24851 μειώνουν σημαντικά την υπερπλασιά του έσω χιτώνα. Λόγω τηςατελούς ενδοθηλιοποίησης, μακράς διάρκειας μελέτες είναι απαραίτητες για ναπιστοποιήσουν ότι η αναστολή του νεοιστού παραμένει και μετά τις 28 ημέρες.


Development ◽  
1996 ◽  
Vol 122 (3) ◽  
pp. 915-923
Author(s):  
W. Halfter ◽  
B. Schurer ◽  
H.M. Hasselhorn ◽  
B. Christ ◽  
E. Gimpel ◽  
...  

A mucin was discovered on the surface of migratory primordial germ cells (PGCs) from chick and rat embryos by means of two monoclonal antibodies. The protein was found to be identical or closely related to ovomucin, a 600 X 10(3) relative molecular mass glycoprotein, and a major constituent of the vitelline membrane of the avian yolk. Based on its resemblance to ovomucin it is referred to as ovomucin-like protein (OLP). The OLP was expressed on PGCs from E3 to E7 female, and from E3 to E12 male chick embryos as the PGCs migrate and colonize the gonadal ridges. After the PGCs have settled in the gonads, they no longer express OLP. In tissue cultures of dissociated cells from E6 gonads, OLP was present only on cells that were positive for PAS staining, the standard histological method to identify PGCs in the chick embryo. Since unfixed PGCs were recognized by the antibodies, at least part of the OLP is localized on the cell surface. The anti-OLP antibodies also stained PGCs in the gonads of the rat embryo, showing that the expression of this antigen on PGCs is phylogenetically conserved. Ovomucin isolated from vitelline membrane prevented adhesion of fibroblasts but not PGCs when used a as a substratum in vitro. The anti-adhesive quality of the mucin resides in the sialic acid residues of the carbohydrate side chains. We propose that OLP has a similar anti-adhesive quality as the ovomucin from vitelline membrane, and that this anti-adhesive property is important to prevent precocious adhesion of migrating PGCs to blood vessel walls and to connective tissue in the mesentery as they migrate toward the gonadal ridges.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Dominique Mahé ◽  
Giulia Matusali ◽  
Claire Deleage ◽  
Raquel L. L. S. Alvarenga ◽  
Anne-Pascale Satie ◽  
...  

ABSTRACT Viruses have colonized the germ line of our ancestors on several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few nonretroviruses. Among the recently emerged viruses infecting humans, several target the testis (e.g., human immunodeficiency virus [HIV], Zika virus, and Ebola virus). Here, we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro. Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration, and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and simian immunodeficiency virus (SIV) DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque, and one African green monkey in vivo. Molecular landscape analysis revealed that early TGCs were enriched in HIV early cofactors up to integration and had overall low antiviral defenses compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate into our germ line and become endogenous in the future, as happened during human evolution for a number of viruses. IMPORTANCE Viruses have colonized the host germ line on many occasions during evolution to eventually become endogenous. Here, we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro. Our results indicate that isolated primary TGCs express alternative HIV-1 receptors, allowing virion binding but not entry. However, HIV-1 entered and integrated into TGCs upon cell-associated infection and produced low levels of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication, including integration, suggesting potential for endogenization in future generations.


2001 ◽  
Vol 65 (3) ◽  
pp. 873-878 ◽  
Author(s):  
Dong Ryul Lee ◽  
Michael T. Kaproth ◽  
John E. Parks

1984 ◽  
Vol 99 (4) ◽  
pp. 1316-1323 ◽  
Author(s):  
R Morimoto ◽  
E Fodor

We have found that chicken reticulocytes respond to elevated temperatures by the induction of only one heat shock protein, HSP70, whereas lymphocytes induce the synthesis of all four heat shock proteins (89,000 mol wt, HSP89; 70,000 mol wt, HSP70; 23,000 mol wt, HSP23; and 22,000 mol wt, HSP22). The synthesis of HSP70 in lymphocytes was rapidly induced by small increases in temperature (2 degrees-3 degrees C) and blocked by preincubation with actinomycin D. Proteins normally translated at control temperatures in reticulocytes or lymphocytes were not efficiently translated after incubation at elevated temperatures. The preferential translation of mRNAs that encode the heat shock proteins paralleled a block in the translation of other cellular proteins. This effect was most prominently observed in reticulocytes where heat shock almost completely repressed alpha- and beta-globin synthesis. HSP70 is one of the major nonglobin proteins in chicken reticulocytes, present in the non-heat-shocked cell at approximately 3 X 10(6) molecules per cell. We compared HSP70 from normal and heat-shocked reticulocytes by two-dimensional gel electrophoresis and by digestion with Staphylococcus aureus V8 protease and found no detectable differences to suggest that the P70 in the normal cell is different from the heat shock-induced protein, HSP70. P70 separated by isoelectric focusing gel electrophoresis into two major protein spots, an acidic P70A (apparent pl = 5.95) and a basic P70B (apparent pl = 6.2). We observed a tissue-specific expression of P70A and P70B in lymphocytes and reticulocytes. In lymphocytes, P70A is the major 70,000-mol-wt protein synthesized at normal temperatures whereas only P70B is synthesized at normal temperatures in reticulocytes. Following incubation at elevated temperatures, the synthesis of both HSP70A and HSP70B was rapidly induced in lymphocytes, but synthesis of only HSP70B was induced in reticulocytes.


1988 ◽  
Vol 66 (2) ◽  
pp. 81-92 ◽  
Author(s):  
Carol A. Curle ◽  
M. Kapoor

Neurospora crassa mycelium was heat shocked for intervals varying from 15–180 min. Heat shock mRNA was monitored by hybridization of Northern blots with the Drosophila hsp-70 gene probe and an inducible member of the yeast hsp-70 gene family, YG100. A 2.7 kilobase (kb) transcript, with homology to these two probes, was detected in cultures shocked for 15 min; its levels increased up to 60–90 min and declined thereafter. Sodium arsenite, too, induced the synthesis of this transcript. An additional, constitutively synthesized 2.4-kb transcript was revealed by hybridization with the yeast probe. The synthesis of this message was terminated during heat shock. Hybridization of Northern blots with the Drosophila actin gene probe demonstrated two size classes, 1.85 and 1.63 kb; the former decreased dramatically following heat shock. Recovery, as assessed by the disappearance of the 2.7-kb hsp-70-mRNA and restoration of the 1.85-kb actin message to the prestress levels, was essentially complete within 60 min of transfer to 28 °C. In vitro translations of RNA from stressed cells showed the heat shock messages to be stable and readily translatable. RNA of cells subjected to heat shock plus CdCl2 showed a higher content of messages for heat shock proteins of 70, 80, and 90 kilodaltons.


1994 ◽  
Vol 300 (1) ◽  
pp. 201-209 ◽  
Author(s):  
G Elia ◽  
M G Santoro

Synthesis of heat-shock proteins (HSPs) is universally induced in eukaryotic and prokaryotic cells by exposure to elevated temperatures or to other types of environmental stress. In mammalian cells, HSPs belonging to the 70 kDa family (HSP70) have a regulatory role in several cellular processes, and have been shown to be involved in the control of cell proliferation and differentiation. Although many types of HSP70 inducers have been identified, only a few compounds, all belonging to the flavonoid group, have been shown to inhibit HSP70 induction. Because inhibitors of HSP70 synthesis could be an important tool with which to study the function of this protein, we have investigated the effect of quercetin, a flavonoid with antiproliferative activity which is widely distributed in nature, on HSP70 synthesis in human K562 erythroleukaemia cells after treatment with severe or mild heat shock and with other inducers. Quercetin was found to affect HSP70 synthesis at more than one level, depending on the conditions used. Indeed, after severe heat shock (45 degrees C for 20 min) treatment with quercetin, at non-toxic concentrations, was found to inhibit HSP70 synthesis for a period of 3-4 h. This block appeared to be exerted at the post-transcriptional level and to be cell-mediated, as the addition of quercetin during translation of HSP70 mRNA in vitro had no effect. After prolonged (90 min) exposure at 43 degrees C, however, quercetin was found to inhibit also HSP70 mRNA transcription. Pretreatment of K562 cells with quercetin had no effect on HSP70 expression, and quercetin needed to be present during induction to be effective. Under all conditions tested, the quercetin-induced block of HSP70 synthesis was found to be transient and, after an initial delay, synthesis of HSP70 reached the control rate and continued at the same level for several hours after the time at which HSP70 synthesis had been turned off in control cells. Finally, inhibition of HSP70 synthesis by quercetin appeared to be dependent on the temperature used and on the type of stressor.


1990 ◽  
Vol 189 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Hisamitsu Ohmori ◽  
Tadamasa Murakami ◽  
Aki Furutani ◽  
Ken Higashi ◽  
Hideyasu Hirano ◽  
...  

Author(s):  
Dominique Mahé ◽  
Giulia Matusali ◽  
Claire Deleage ◽  
Raquel L. L. S. Alvarenga ◽  
Anne-Pascale Satie ◽  
...  

AbstractViruses have colonized the germ line of our ancestors at several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few non-retroviruses. Among the recently emerged viruses infecting humans, several target the testis (eg HIV, Zika and Ebola viruses). Here we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro. Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and SIV DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque and one African Green monkey in vivo. Molecular landscape analysis revealed that early TGCs were enriched in HIV early co-factors up to integration and had overall low antiviral defenses when compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate our germline and become endogenous in the future, as happened during human evolution for a number of viruses.ImportanceViruses have colonized the host germ line at many occasions during evolution to eventually become endogenous. Here we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro. Our results indicate that isolated primary TGCs express alternative HIV-1 receptors allowing virions binding but not entry. However, HIV-1 entered and integrated in TGCs upon cell-associated infection, and produced low level of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication including integration, suggesting potential for endogenization in the future generations.


Sign in / Sign up

Export Citation Format

Share Document