scholarly journals The nuclear membrane determines the timing of DNA replication in Xenopus egg extracts.

1991 ◽  
Vol 112 (4) ◽  
pp. 557-566 ◽  
Author(s):  
G H Leno ◽  
R A Laskey

We have exploited a property of chicken erythrocyte nuclei to analyze the regulation of DNA replication in a cell-free system from Xenopus eggs. Many individual demembranated nuclei added to the extract often became enclosed within a common nuclear membrane. Nuclei within such a "multinuclear aggregate" lacked individual membranes but shared the perimeter membrane of the aggregate. Individual nuclei that were excluded from the aggregates initiated DNA synthesis at different times over a 10-12-h period, as judged by incorporation of biotinylated dUTP into discrete replication foci at early times, followed by uniformly intense incorporation at later times. Replication forks were clustered in spots, rings, and horseshoe-shaped structures similar to those described in cultured cells. In contrast to the asynchronous replication seen between individual nuclei, replication within multinuclear aggregates was synchronous. There was a uniform distribution and similar fluorescent intensity of the replication foci throughout all the nuclei enclosed within the same membrane. However, different multinuclear aggregates replicated out of synchrony with each other indicating that each membrane-bound aggregate acts as an individual unit of replication. These data indicate that the nuclear membrane defines the unit of DNA replication and determines the timing of DNA synthesis in egg extract resulting in highly coordinated triggering of DNA replication on the DNA it encloses.

1995 ◽  
Vol 15 (6) ◽  
pp. 2942-2954 ◽  
Author(s):  
D M Gilbert ◽  
H Miyazawa ◽  
M L DePamphilis

Previous studies have shown that Xenopus egg extract can initiate DNA replication in purified DNA molecules once the DNA is organized into a pseudonucleus. DNA replication under these conditions is independent of DNA sequence and begins at many sites distributed randomly throughout the molecules. In contrast, DNA replication in the chromosomes of cultured animal cells initiates at specific, heritable sites. Here we show that Xenopus egg extract can initiate DNA replication at specific sites in mammalian chromosomes, but only when the DNA is presented in the form of an intact nucleus. Initiation of DNA synthesis in nuclei isolated from G1-phase Chinese hamster ovary cells was distinguished from continuation of DNA synthesis at preformed replication forks in S-phase nuclei by a delay that preceded DNA synthesis, a dependence on soluble Xenopus egg factors, sensitivity to a protein kinase inhibitor, and complete labeling of nascent DNA chains. Initiation sites for DNA replication were mapped downstream of the amplified dihydrofolate reductase gene region by hybridizing newly replicated DNA to unique probes and by hybridizing Okazaki fragments to the two individual strands of unique probes. When G1-phase nuclei were prepared by methods that preserved the integrity of the nuclear membrane, Xenopus egg extract initiated replication specifically at or near the origin of bidirectional replication utilized by hamster cells (dihydrofolate reductase ori-beta). However, when nuclei were prepared by methods that altered nuclear morphology and damaged the nuclear membrane, preference for initiation at ori-beta was significantly reduced or eliminated. Furthermore, site-specific initiation was not observed with bare DNA substrates, and Xenopus eggs or egg extracts replicated prokaryotic DNA or hamster DNA that did not contain a replication origin as efficiently as hamster DNA containing ori-beta. We conclude that initiation sites for DNA replication in mammalian cells are established prior to S phase by some component of nuclear structure and that these sites can be activated by soluble factors in Xenopus eggs.


1999 ◽  
Vol 10 (12) ◽  
pp. 4091-4106 ◽  
Author(s):  
Zhi Hong Lu ◽  
Hongzhi Xu ◽  
Gregory H. Leno

Quiescent nuclei from differentiated somatic cells can reacquire pluripotence, the capacity to replicate, and reinitiate a program of differentiation after transplantation into amphibian eggs. The replication of quiescent nuclei is recapitulated in extracts derived from activated Xenopus eggs; therefore, we have exploited this cell-free system to explore the mechanisms that regulate initiation of replication in nuclei from terminally differentiatedXenopus erythrocytes. We find that these nuclei lack many, if not all, pre-replication complex (pre-RC) proteins. Pre-RC proteins from the extract form a stable association with the chromatin of permeable nuclei, which replicate in this system, but not with the chromatin of intact nuclei, which do not replicate, even though these proteins cross an intact nuclear envelope. During extract incubation, the linker histones H1 and H10 are removed from erythrocyte chromatin by nucleoplasmin. We show that H1 removal facilitates the replication of permeable nuclei by increasing the frequency of initiation most likely by promoting the assembly of pre-RCs on chromatin. These data indicate that initiation in erythrocyte nuclei requires the acquisition of pre-RC proteins from egg extract and that pre-RC assembly requires the loss of nuclear envelope integrity and is facilitated by the removal of linker histone H1 from chromatin.


2002 ◽  
Vol 283 (5) ◽  
pp. C1365-C1375 ◽  
Author(s):  
Sybille Rex ◽  
Maria A. Kukuruzinska ◽  
Nawfal W. Istfan

We have recently noted that cells treated with fish oil and n–3-fatty acids show slower DNA replication rates than cells treated with a control emulsion or corn oil only. However, it is not clearly understood how such an effect is induced. Fish oil and its metabolites are known to have several modulating effects on signal transduction pathways. Alternatively, they may influence DNA replication by interacting directly with nuclear components. To investigate this problem in greater detail, we have studied the kinetics of DNA synthesis in a cell-free system derived from HeLa cells. Nuclei and cytosolic extract were isolated from cells synchronized in early S phase after treatment with control emulsion, corn oil, or fish oil, respectively. The nuclei were reconstituted with cytosolic extract and a reaction mixture containing bromodeoxyuridine (BrdU) triphosphate to label newly synthesized DNA. The rate of DNA synthesis was measured by bivariate DNA/BrdU analysis and flow cytometry. We show that fish oil-treated cytosol inhibits the elongation of newly synthesized DNA by ∼80% in control nuclei. However, nuclei treated with fish oil escape this inhibitory effect. We also show that addition of nuclear extract from fish oil-treated cells reverses the inhibitory effect seen in the reconstitution system of control nuclei and fish oil-treated cytosol. These results indicate that polyunsaturated fatty acids can modulate DNA synthesis through cytosolic as well as soluble nuclear factors.


1990 ◽  
Vol 97 (1) ◽  
pp. 177-184
Author(s):  
L.S. Cox ◽  
G.H. Leno

We describe a cell-free extract derived from the oocytes of Xenopus laevis. The oocyte extract is capable of decondensing sperm chromatin and of replicating single-stranded DNA in a semiconservative, aphidicolin-sensitive manner. In addition, oocyte extract supports the elongation phase of DNA synthesis in nuclei that have been preinitiated for replication. All of these properties are shared by previously described egg extracts. However, oocyte extracts differ from egg extracts in two important ways. First, they cannot support nuclear assembly, as visualised by phase-contrast, fluorescence and electron microscopy. Second, they do not initiate replication on chromatin or nuclei de novo. Crude low-speed supernatants can be partially fractionated into soluble and vesicular components by high-speed centrifugation. Such fractions from eggs can be functionally reconstituted, but the oocyte soluble fraction does not acquire the ability to assemble nuclei, or replicate them, even when supplemented with the egg vesicular fraction. Similarly, oocyte vesicles cannot substitute for egg vesicles on reconstitution with the egg soluble fraction. When the requirement for nuclear assembly is bypassed by using preformed, quiescent nuclei, replication is observed in egg but not oocyte extracts. However, the oocyte extract is not inhibitory for initiation of replication, as it does not prevent replication of sperm nuclei when mixed with egg extract. We suggest that the different capabilities of egg and oocyte extracts could provide the basis of an assay system for identifying factors involved in the initiation of DNA replication.


1994 ◽  
Vol 127 (1) ◽  
pp. 5-14 ◽  
Author(s):  
G H Leno ◽  
R Munshi

We have investigated the replication capacity of intact nuclei from quiescent cells using Xenopus egg extract. Nuclei, with intact nuclear membranes, were isolated from both exponentially growing and contact-inhibited BALB/c 3T3 fibroblasts by treatment of the cells with streptolysin-O. Flow cytometry showed that > 90% of all contact-inhibited cells and approximately 50% of the exponential cells were in G0/G1-phase at the time of nuclear isolation. Intact nuclei were assayed for replication in the extract by incorporation of [alpha-32P]dATP or biotin-dUTP into nascent DNA. Most nuclei from exponential cells replicated in the egg extract, consistent with previous results showing that intact G1 nuclei from HeLa cells replicate in this system. In contrast, few nuclei from quiescent cells replicated in parallel incubations. However, when the nuclear membranes of these intact quiescent nuclei were permeabilized with lysophosphatidylcholine prior to addition to the extract, nearly all the nuclei replicated under complete cell cycle control in a subsequent incubation. The ability of LPC-treated quiescent nuclei to undergo DNA replication was reversed by resealing permeable nuclear membranes with Xenopus egg membranes prior to extract incubation demonstrating that the effect of LPC treatment is at the level of the nuclear membrane. These results indicate that nuclei from G1-phase cells lose their capacity to initiate DNA replication following density-dependent growth arrest and suggest that changes in nuclear membrane permeability may be required for the initiation of replication upon re-entry of the quiescent cell into the cell cycle.


2018 ◽  
Author(s):  
Maiko Kitaoka ◽  
Rebecca Heald ◽  
Romain Gibeaux

ABSTRACTEgg extracts of the African clawed frog Xenopus laevis have provided a cell-free system instrumental in elucidating events of the cell cycle, including mechanisms of spindle assembly. Comparison with extracts from the diploid Western clawed frog, Xenopus tropicalis, which is smaller at the organism, cellular and subcellular levels, has enabled the identification of spindle size scaling factors. We set out to characterize the Marsabit clawed frog, Xenopus borealis, which is intermediate in size between the two species, but more recently diverged in evolution from X. laevis than X. tropicalis. X. borealis eggs were slightly smaller than those of X. laevis, and slightly smaller spindles were assembled in egg extracts. Interestingly, microtubule distribution across the length of the X. borealis spindles differed from both X. laevis and X. tropicalis. Extract mixing experiments revealed common scaling phenomena among Xenopus species, while characterization of spindle factors katanin, TPX2, and Ran indicate that X. borealis spindles possess both X. laevis and X. tropicalis features. Thus, X. borealis egg extract provides a third in vitro system to investigate interspecies scaling and spindle morphometric variation.


2009 ◽  
Vol 29 (21) ◽  
pp. 5775-5788 ◽  
Author(s):  
Valentina Salsi ◽  
Silvia Ferrari ◽  
Roberta Ferraresi ◽  
Andrea Cossarizza ◽  
Alexis Grande ◽  
...  

ABSTRACT HOX DNA-binding proteins control patterning during development by regulating processes such as cell aggregation and proliferation. Recently, a possible involvement of HOX proteins in replication origin activity was suggested by results showing that a number of HOX proteins interact with the DNA replication licensing regulator geminin and bind a characterized human origin of replication. The functional significance of these observations, however, remained unclear. We show that HOXD13, HOXD11, and HOXA13 bind in vivo all characterized human replication origins tested. We furthermore show that HOXD13 interacts with the CDC6 loading factor, promotes pre-replication complex (pre-RC) proteins assembly at origins, and stimulates DNA synthesis in an in vivo replication assay. HOXD13 expression in cultured cells accelerates DNA synthesis initiation in correlation with the earlier pre-RC recruitment onto origins during G1 phase. Geminin, which interacts with HOXD13 as well, blocks HOXD13-mediated assembly of pre-RC proteins and inhibits HOXD13-induced DNA replication. Our results uncover a function for Hox proteins in the regulation of replication origin activity and reveal an unforeseen role for the inhibition of HOX protein activity by geminin in the context of replication origin licensing.


1996 ◽  
Vol 133 (5) ◽  
pp. 955-969 ◽  
Author(s):  
J Fang ◽  
R M Benbow

Quiescent cells from adult vertebrate liver and contact-inhibited or serum-deprived tissue cultures are active metabolically but do not carry out nuclear DNA replication and cell division. Replication of intact nuclei isolated from either quiescent Xenopus liver or cultured Xenopus A6 cells in quiescence was barely detectable in interphase extracts of Xenopus laevis eggs, although Xenopus sperm chromatin was replicated with approximately 100% efficiency in the same extracts. Permeabilization of nuclei from quiescent Xenopus liver or cultured Xenopus epithelial A6 cells did not facilitate efficient replication in egg extracts. Moreover, replication of Xenopus sperm chromatin in egg extracts was strongly inhibited by a soluble extract of isolated Xenopus liver nuclei; in contrast, complementary-strand synthesis on single-stranded DNA templates in egg extracts was not affected. Inhibition was specific to endogenous molecules localized preferentially in quiescent as opposed to proliferating cell nuclei, and was not due to suppression of cdk2 kinase activity. Extracts of Xenopus liver nuclei also inhibited growth of sperm nuclei formed in egg extracts. However, the rate and extent of decondensation of sperm chromatin in egg extracts were not affected. The formation of prereplication centers detected by anti-RP-A antibody was not affected by extracts of liver nuclei, but formation of active replication foci was blocked by the same extracts. Inhibition of DNA replication was alleviated when liver nuclear extracts were added to metaphase egg extracts before or immediately after Ca++ ion-induced transition to interphase. A plausible interpretation of our data is that endogenous inhibitors of DNA replication play an important role in establishing and maintaining a quiescent state in Xenopus cells, both in vivo and in cultured cells, perhaps by negatively regulating positive modulators of the replication machinery.


2004 ◽  
Vol 24 (2) ◽  
pp. 595-607 ◽  
Author(s):  
David A. Barbie ◽  
Brian A. Kudlow ◽  
Richard Frock ◽  
Jiyong Zhao ◽  
Brett R. Johnson ◽  
...  

ABSTRACT In primary mammalian cells, DNA replication initiates in a small number of perinucleolar, lamin A/C-associated foci. During S-phase progression in proliferating cells, replication foci distribute to hundreds of sites throughout the nucleus. In contrast, we find that the limited perinucleolar replication sites persist throughout S phase as cells prepare to exit the cell cycle in response to contact inhibition, serum starvation, or replicative senescence. Proteins known to be involved in DNA synthesis, such as PCNA and DNA polymerase δ, are concentrated in perinucleolar foci throughout S phase under these conditions. Moreover, chromosomal loci are redirected toward the nucleolus and overlap with the perinucleolar replication foci in cells poised to undergo cell cycle exit. These same loci remain in the periphery of the nucleus during replication under highly proliferative conditions. These results suggest that mammalian cells undergo a large-scale reorganization of chromatin during the rounds of DNA replication that precede cell cycle exit.


1999 ◽  
Vol 19 (4) ◽  
pp. 2585-2593 ◽  
Author(s):  
Paul Labhart

ABSTRACT An extract from activated Xenopus eggs joins both matching and nonmatching ends of exogenous linear DNA substrates with high efficiency and fidelity (P. Pfeiffer and W. Vielmetter, Nucleic Acids Res. 16:907–924, 1988). In mammalian cells, such nonhomologous end joining (NHEJ) is known to require the Ku heterodimer, a component of DNA-dependent protein kinase. Here I investigated whether Ku is also required for the in vitro reaction in the egg extract. Immunological assays indicate that Ku is very abundant in the extract. I found that all NHEJ was inhibited by autoantibodies against Ku and that NHEJ between certain combinations of DNA ends was also decreased after immunodepletion of Ku from the extract. The formation of a joint between a DNA end with a 5′-protruding single strand (PSS) and an end with a 3′-PSS, between two ends with 3′-PSS, and between two blunt ends was most Ku dependent. On the other hand, NHEJ between two DNA ends bearing 5′-PSS was Ku independent. These results show that theXenopus cell-free system will be useful to biochemically dissect the role of Ku in eukaryotic NHEJ.


Sign in / Sign up

Export Citation Format

Share Document