scholarly journals The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles.

1991 ◽  
Vol 113 (3) ◽  
pp. 539-551 ◽  
Author(s):  
G C Johnston ◽  
J A Prendergast ◽  
R A Singer

After the initiation of bud formation, cells of the yeast Saccharomyces cerevisiae direct new growth to the developing bud. We show here that this vectorial growth is facilitated by activity of the MYO2 gene. The wild-type MYO2 gene encodes an essential form of myosin composed of an NH2-terminal domain typical of the globular, actin-binding domain of other myosins. This NH2-terminal domain is linked by what appears to be a short alpha-helical domain to a novel COOH-terminal region. At the restrictive temperature the myo2-66 mutation does not impair DNA, RNA, or protein biosynthetic activity, but produces unbudded, enlarged cells. This phenotype suggests a defect in localization of cell growth. Measurements of cell size demonstrated that the continued development of initiated buds, as well as bud initiation itself, is inhibited. Bulk secretion continues in mutant cells, although secretory vesicles accumulate. The MYO2 myosin thus may function as the molecular motor to transport secretory vesicles along actin cables to the site of bud development.

1994 ◽  
Vol 125 (4) ◽  
pp. 825-842 ◽  
Author(s):  
S H Lillie ◽  
S S Brown

Myo2 protein (Myo2p), an unconventional myosin in the budding yeast Saccharomyces cerevisiae, has been implicated in polarized growth and secretion by studies of the temperature-sensitive myo2-66 mutant. Overexpression of Smy1p, which by sequence is a kinesin-related protein, can partially compensate for defects in the myo2 mutant (Lillie, S. H. and S. S. Brown, 1992. Nature (Lond.). 356:358-361). We have now immunolocalized Smy1p and Myo2p. Both are concentrated in regions of active growth, as caps at incipient bud sites and on small buds, at the mother-bud neck just before cell separation, and in mating cells as caps on shmoo tips and at the fusion bridge of zygotes. Double labeling of cells with either Myo2p or Smy1p antibody plus phalloidin was used to compare the localization of Smy1p and Myo2p to actin, and by extrapolation, to each other. These studies confirmed that Myo2p and Smy1p colocalize, and are concentrated in the same general regions of the cell as actin spots. However, neither colocalizes with actin. We noted a correlation in the behavior of Myo2p, Smy1p, and actin, but not microtubules, under a number of circumstances. In cdc4 and cdc11 mutants, which produce multiple buds, Myo2p and Smy1p caps were found only in the subset of buds that had accumulations of actin. Mutations in actin or secretory genes perturb actin, Smy1p and Myo2p localization. The rearrangements of Myo2p and Smy1p correlate temporally with those of actin spots during the cell cycle, and upon temperature and osmotic shift. In contrast, microtubules are not grossly affected by these perturbations. Although wild-type Myo2p localization does not require Smy1p, Myo2p staining is brighter when SMY1 is overexpressed. The myo2 mutant, when shifted to restrictive temperature, shows a permanent loss in Myo2p localization and actin polarization, both of which can be restored by SMY1 overexpression. However, the lethality of MYO2 deletion is not overcome by SMY1 overexpression. We noted that the myo2 mutant can recover from osmotic shift (unlike actin mutants; Novick, P., and D. Botstein. 1985. Cell. 40:405-416). We have also determined that the myo2-66 allele encodes a Lys instead of a Glu at position 511, which lies at an actin-binding face in the motor domain.


1992 ◽  
Vol 12 (6) ◽  
pp. 2653-2661
Author(s):  
E Gross ◽  
I Marbach ◽  
D Engelberg ◽  
M Segal ◽  
G Simchen ◽  
...  

The CDC25 gene product of the yeast Saccharomyces cerevisiae has been shown to be a positive regulator of the Ras protein. The high degree of homology between yeast RAS and the mammalian proto-oncogene ras suggests a possible resemblance between the mammalian regulator of Ras and the regulator of the yeast Ras (Cdc25). On the basis of this assumption, we have raised antibodies against the conserved C-terminal domain of the Cdc25 protein in order to identify its mammalian homologs. Anti-Cdc25 antibodies raised against a beta-galactosidase-Cdc25 fusion protein were purified by immunoaffinity chromatography and were shown by immunoblotting to specifically recognize the Cdc25 portion of the antigen and a truncated Cdc25 protein, also expressed in bacteria. These antibodies were shown both by immunoblotting and by immunoprecipitation to recognize the CDC25 gene product in wild-type strains and in strains overexpressing Cdc25. The anti-Cdc25 antibodies potently inhibited the guanyl nucleotide-dependent and, approximately 3-fold less potently, the Mn(2+)-dependent adenylyl cyclase activity in S. cerevisiae. The anti-Cdc25 antibodies do not inhibit cyclase activity in a strain harboring RAS2Val-19 and lacking the CDC25 gene product. These results support the view that Cdc25, Ras2, and Cdc35/Cyr1 proteins are associated in a complex. Using these antibodies, we were able to define the conditions to completely solubilize the Cdc25 protein. The results suggest that the Cdc25 protein is tightly associated with the membrane but is not an intrinsic membrane protein, since only EDTA at pH 12 can solubilize the protein. The anti-Cdc25 antibodies strongly cross-reacted with the C-terminal domain of the Cdc25 yeast homolog, Sdc25. Most interestingly, these antibodies also cross-reacted with mammalian proteins of approximately 150 kDa from various tissues of several species of animals. These interactions were specifically blocked by the beta-galactosidase-Cdc25 fusion protein.


1999 ◽  
Vol 147 (4) ◽  
pp. 791-808 ◽  
Author(s):  
Daniel Schott ◽  
Jackson Ho ◽  
David Pruyne ◽  
Anthony Bretscher

MYO2 encodes a type V myosin heavy chain needed for the targeting of vacuoles and secretory vesicles to the growing bud of yeast. Here we describe new myo2 alleles containing conditional lethal mutations in the COOH-terminal tail domain. Within 5 min of shifting to the restrictive temperature, the polarized distribution of secretory vesicles is abolished without affecting the distribution of actin or the mutant Myo2p, showing that the tail has a direct role in vesicle targeting. We also show that the actin cable–dependent translocation of Myo2p to growth sites does not require secretory vesicle cargo. Although a fusion protein containing the Myo2p tail also concentrates at growth sites, this accumulation depends on the polarized delivery of secretory vesicles, implying that the Myo2p tail binds to secretory vesicles. Most of the new mutations alter a region of the Myo2p tail conserved with vertebrate myosin Vs but divergent from Myo4p, the myosin V involved in mRNA transport, and genetic data suggest that the tail interacts with Smy1p, a kinesin homologue, and Sec4p, a vesicle-associated Rab protein. The data support a model in which the Myo2p tail tethers secretory vesicles, and the motor transports them down polarized actin cables to the site of exocytosis.


2020 ◽  
Vol 48 (10) ◽  
pp. 5407-5425 ◽  
Author(s):  
Katarzyna Kaczmarek Michaels ◽  
Salwa Mohd Mostafa ◽  
Julia Ruiz Capella ◽  
Claire L Moore

Abstract Adjusting DNA structure via epigenetic modifications, and altering polyadenylation (pA) sites at which precursor mRNA is cleaved and polyadenylated, allows cells to quickly respond to environmental stress. Since polyadenylation occurs co-transcriptionally, and specific patterns of nucleosome positioning and chromatin modifications correlate with pA site usage, epigenetic factors potentially affect alternative polyadenylation (APA). We report that the histone H3K4 methyltransferase Set1, and the histone H3K36 methyltransferase Set2, control choice of pA site in Saccharomyces cerevisiae, a powerful model for studying evolutionarily conserved eukaryotic processes. Deletion of SET1 or SET2 causes an increase in serine-2 phosphorylation within the C-terminal domain of RNA polymerase II (RNAP II) and in the recruitment of the cleavage/polyadenylation complex, both of which could cause the observed switch in pA site usage. Chemical inhibition of TOR signaling, which causes nutritional stress, results in Set1- and Set2-dependent APA. In addition, Set1 and Set2 decrease efficiency of using single pA sites, and control nucleosome occupancy around pA sites. Overall, our study suggests that the methyltransferases Set1 and Set2 regulate APA induced by nutritional stress, affect the RNAP II C-terminal domain phosphorylation at Ser2, and control recruitment of the 3′ end processing machinery to the vicinity of pA sites.


1994 ◽  
Vol 127 (3) ◽  
pp. 623-639 ◽  
Author(s):  
B M Benton ◽  
J H Zang ◽  
J Thorner

The gene (FPR3) encoding a novel type of peptidylpropyl-cis-trans-isomerase (PPIase) was isolated during a search for previously unidentified nuclear proteins in Saccharomyces cerevisiae. PPIases are thought to act in conjunction with protein chaperones because they accelerate the rate of conformational interconversions around proline residues in polypeptides. The FPR3 gene product (Fpr3) is 413 amino acids long. The 111 COOH-terminal residues of Fpr3 share greater than 40% amino acid identity with a particular class of PPIases, termed FK506-binding proteins (FKBPs) because they are the intracellular receptors for two immunosuppressive compounds, rapamycin and FK506. When expressed in and purified from Escherichia coli, both full-length Fpr3 and its isolated COOH-terminal domain exhibit readily detectable PPIase activity. Both fpr3 delta null mutants and cells expressing FPR3 from its own promoter on a multicopy plasmid have no discernible growth phenotype and do not display any alteration in sensitivity to the growth-inhibitory effects of either FK506 or rapamycin. In S. cerevisiae, the gene for a 112-residue cytosolic FKBP (FPR1) and the gene for a 135-residue ER-associated FKBP (FPR2) have been described before. Even fpr1 fpr2 fpr3 triple mutants are viable. However, in cells carrying an fpr1 delta mutation (which confers resistance to rapamycin), overexpression from the GAL1 promoter of the C-terminal domain of Fpr3, but not full-length Fpr3, restored sensitivity to rapamycin. Conversely, overproduction from the GAL1 promoter of full-length Fpr3, but not its COOH-terminal domain, is growth inhibitory in both normal cells and fpr1 delta mutants. In fpr1 delta cells, the toxic effect of Fpr3 overproduction can be reversed by rapamycin. Overproduction of the NH2-terminal domain of Fpr3 is also growth inhibitory in normal cells and fpr1 delta mutants, but this toxicity is not ameliorated in fpr1 delta cells by rapamycin. The NH2-terminal domain of Fpr3 contains long stretches of acidic residues alternating with blocks of basic residues, a structure that resembles sequences found in nucleolar proteins, including S. cerevisiae NSR1 and mammalian nucleolin. Indirect immunofluorescence with polyclonal antibodies raised against either the NH2- or the COOH-terminal segments of Fpr3 expressed in E. coli demonstrated that Fpr3 is located exclusively in the nucleolus.


Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Jeffrey S Flick ◽  
Jeremy Thorner

Abstract The PLC1 gene product of Saccharomyces cerevisiae is a homolog of the δ isoform of mammalian phosphoinositide-specific phospholipase C (PI-PLC). We found that two genes (SPL1 and SPL2), when overexpressed, can bypass the temperature-sensitive growth defect of a plc1Δ cell. SPL1 is identical to the PHO81 gene, which encodes an inhibitor of a cyclin (Pho80p)-dependent protein kinase (Pho85p) complex (Cdk). In addition to overproduction of Pho81p, two other conditions that inactivate this Cdk, a cyclin (pho80Δ) mutation and growth on low-phosphate medium, also permitted growth of plc1Δ cells at the restrictive temperature. Suppression of the temperature sensitivity of plc1Δ cells by pho80Δ does not depend upon the Pho4p transcriptional regulator, the only known substrate of the Pho80p/Pho85p Cdk. The second suppressor, SPL2, encodes a small (17-kD) protein that bears similarity to the ankyrin repeat regions present in Pho81p and in other known Cdk inhibitors. Both pho81Δ and spl2Δ show a synthetic phenotype in combination with plc1Δ. Unlike single mutants, plc1Δ pho81Δ and plc1Δ spl2Δ double mutants were unable to grow on synthetic complete medium, but were able to grow on rich medium.


1991 ◽  
Vol 11 (11) ◽  
pp. 5592-5602
Author(s):  
N Sethi ◽  
M C Monteagudo ◽  
D Koshland ◽  
E Hogan ◽  
D J Burke

Previous analysis of cdc20 mutants of the yeast Saccharomyces cerevisiae suggests that the CDC20 gene product (Cdc20p) is required for two microtubule-dependent processes, nuclear movements prior to anaphase and chromosome separation. Here we report that cdc20 mutants are defective for a third microtubule-mediated event, nuclear fusion during mating of G1 cells, but appear normal for a fourth microtubule-dependent process, nuclear migration after DNA replication. Therefore, Cdc20p is required for a subset of microtubule-dependent processes and functions at multiple stages in the life cycle. Consistent with this interpretation, we find that cdc20 cells arrested by alpha-factor or at the restrictive temperature accumulate anomalous microtubule structures, as detected by indirect immunofluorescence. The anomalous microtubule staining patterns are due to cdc20 because intragenic revertants that revert the temperature sensitivity have normal microtubule morphologies. cdc20 mutants have a sevenfold increase in the intensity of antitubulin fluorescence in intranuclear spindles compared with spindles from wild-type cells, yet the total amount of tubulin is indistinguishable by Western immunoblot analysis. This result suggests that Cdc20p modulates microtubule structure in wild-type cells either by promoting microtubule disassembly or by altering the surface of the microtubules. Finally, we cloned and sequenced CDC20 and show that it encodes a member of a family of proteins that share homology to the beta subunit of transducin.


1994 ◽  
Vol 14 (8) ◽  
pp. 5569-5578 ◽  
Author(s):  
K Mitsui ◽  
S Yaguchi ◽  
K Tsurugi

A gene with an open reading frame encoding a protein of 417 amino acid residues with a Gly-Thr repeat was isolated from the yeast Saccharomyces cerevisiae by using synthetic oligonucleotides encoding three Gly-Thr dimers as probes. The deduced amino acid sequence showed partial homology to the clock-affecting gene, per, of Drosophila melanogaster in the regions including the GT repeat. The function of the gene, named GTS1, was examined by characterizing the phenotypes of transformants with different copy numbers of the GTS1 gene produced either by inactivating the GTS1 gene by gene disruption (TM delta gts1) or by transformation with multicopy plasmid pPER119 (TMpGTS1). They grew at similar rates during the exponential growth phase, but the lag phases were shorter for TM delta gts1 and longer for TMpGTS1 cells than that for the wild type. Analyses of their cell cycle parameters using synchronized cells revealed that the unbudding period changed as a function of gene dosage; that is, the periods of TM delta gts1 and TMpGTS1 were about 20% shorter and longer, respectively, than that of the wild-type. Another significant change in the transformants was detected in the distribution of the cell size. The mean cell volume of the TM delta gts1 cells in the unbudded period (single cells) was 27% smaller than that of single wild-type cells, whereas that of single TMpGTS1 cells was 48% larger. Furthermore, in the temperature-sensitive cdc4 mutant, the GTS1 gene affected the timing of budding at the restrictive temperature. Thus, the GTS1 gene product appears to modulate the timing of budding to obtain an appropriate cell size independent of the DNA replication cycle.


Genetics ◽  
1988 ◽  
Vol 120 (3) ◽  
pp. 681-695
Author(s):  
P J Schatz ◽  
F Solomon ◽  
D Botstein

Abstract Microtubules in yeast are functional components of the mitotic and meiotic spindles and are essential for nuclear movement during cell division and mating. We have isolated 70 conditional-lethal mutations in the TUB1 alpha-tubulin gene of the yeast Saccharomyces cerevisiae using a plasmid replacement technique. Of the 70 mutations isolated, 67 resulted in cold-sensitivity, one resulted in temperature-sensitivity, and two resulted in both. Fine-structure mapping revealed that the mutations were located throughout the TUB1 gene. We characterized the phenotypes caused by 38 of the mutations after shifts of mutants to the nonpermissive temperature. Populations of temperature-shifted mutant cells contained an excess of large-budded cells with undivided nuclei, consistent with the previously determined role of microtubules in yeast mitosis. Several of the mutants arrested growth with a sufficiently uniform morphology to indicate that TUB1 has at least one specific role in the progression of the yeast cell cycle. A number of the mutants had gross defects in microtubule assembly at the restrictive temperature, some with no microtubules and some with excess microtubules. Other mutants contained disorganized microtubules and nuclei. There were no obvious correlations between these phenotypes and the map positions of the mutations. Greater than 90% of the mutants examined were hypersensitive to the antimicrotubule drug benomyl. Mutations that suppressed the cold-sensitive phenotypes of two of the TUB1 alleles occurred in TUB2, the single structural gene specifying beta-tubulin.


1987 ◽  
Vol 88 (3) ◽  
pp. 273-281
Author(s):  
K. Tachibana ◽  
N. Yanagishima ◽  
T. Kishimoto

It has been known for some time that maturation-promoting factor (MPF) appears in a wide variety of eukaryotic cells at M phase and exerts equal M-phase-promoting activity in both meiotic cells and mitotic cells in a non-specific manner. MPF was extracted from cdc20 mutant cells of the yeast Saccharomyces cerevisiae synchronized at M phase by incubation at the restrictive temperature. When injected into immature oocytes of Xenopus laevis, yeast MPF caused meiosis reinitiation in a dose-dependent manner and even in the presence of cycloheximide. Yeast MPF exerted its activity in starfish oocytes as well. MPF activity was obtained only from cells in M phase and not from G1, S or G2 phase cells, indicating cyclical changes during the yeast mitotic cell cycle. Preliminary characterization of yeast MPF revealed that its activity was associated with a heat-labile protein having a sedimentation coefficient value of 6 S. In contrast to the current assumption that MPF is a Ca-sensitive phosphoprotein stabilized by phosphorylated small molecules, such as ATP and Na-beta-glycerophosphate, the present study revealed that yeast MPF was still active even after treatment with either Ca2+ or alkaline phosphatase. Furthermore, it was found that yeast MPF and these phosphorylated small molecules were complementary in inducing reinitiation of meiosis, since the meiosis-reinitiating activity was detected only when both were present simultaneously and almost undetectable when either of them was present alone.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document