scholarly journals Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial dnaJ proteins.

1991 ◽  
Vol 114 (4) ◽  
pp. 623-638 ◽  
Author(s):  
M M Luke ◽  
A Sutton ◽  
K T Arndt

The Saccharomyces cerevisiae SIS1 gene was identified as a high copy number suppressor of the slow growth phenotype of strains containing mutations in the SIT4 gene, which encodes a predicted serine/threonine protein phosphatase. The SIS1 protein is similar to bacterial dnaJ proteins in the amino-terminal third and carboxyl-terminal third of the proteins. In contrast, the middle third of SIS1 is not similar to dnaJ proteins. This region of SIS1 contains a glycine/methionine-rich region which, along with more amino-terminal sequences, is required for SIS1 to associate with a protein of apparent molecular mass of 40 kD. The SIS1 gene is essential. Strains limited for the SIS1 protein accumulate cells that appear blocked for migration of the nucleus from the mother cell into the daughter cell. In addition, many of the cells become very large and contain a large vacuole. The SIS1 protein is localized throughout the cell but is more concentrated at the nucleus. About one-fourth of the SIS1 protein is released from a nuclear fraction upon treatment with RNase. We also show that overexpression of YDJ1, another yeast protein with similarity to bacterial dnaJ proteins, can not substitute for SIS1.

1998 ◽  
Vol 18 (12) ◽  
pp. 7344-7352 ◽  
Author(s):  
Kara J. Dolinski ◽  
Maria E. Cardenas ◽  
Joseph Heitman

ABSTRACT Cyclophilins are cis-trans-peptidyl-prolyl isomerases that bind to and are inhibited by the immunosuppressant cyclosporin A (CsA). The toxic effects of CsA are mediated by the 18-kDa cyclophilin A protein. A larger cyclophilin of 40 kDa, cyclophilin 40, is a component of Hsp90-steroid receptor complexes and contains two domains, an amino-terminal prolyl isomerase domain and a carboxy-terminal tetratricopeptide repeat (TPR) domain. There are two cyclophilin 40 homologs in the yeast Saccharomyces cerevisiae, encoded by the CPR6 and CPR7 genes. Yeast strains lacking the Cpr7 enzyme are viable but exhibit a slow-growth phenotype. In addition, we show here that cpr7 mutant strains are hypersensitive to the Hsp90 inhibitor geldanamycin. When overexpressed, the TPR domain of Cpr7 alone complements both cpr7 mutant phenotypes, while overexpression of the cyclophilin domain of Cpr7, full-length Cpr6, or human cyclophilin 40 does not. The open reading frame YBR155w, which has moderate identity to the yeast p60 homologSTI1, was isolated as a high-copy-number suppressor of thecpr7 slow-growth phenotype. We show that this Sti1 homolog Cns1 (cyclophilin seven suppressor) is constitutively expressed, essential, and found in protein complexes with both yeast Hsp90 and Cpr7 but not with Cpr6. Cyclosporin A inhibited Cpr7 interactions with Cns1 but not with Hsp90. In summary, our findings identify a novel component of the Hsp90 chaperone complex that shares function with cyclophilin 40 and provide evidence that there are functional differences between two conserved sets of Hsp90 binding proteins in yeast.


Genetics ◽  
1995 ◽  
Vol 139 (1) ◽  
pp. 95-107 ◽  
Author(s):  
C J Di Como ◽  
R Bose ◽  
K T Arndt

Abstract The Saccharomyces cerevisiae SIS2 gene was identified by its ability, when present on a high copy number plasmid, to increase dramatically the growth rate of sit4 mutants. SIT4 encodes a type 2A-related protein phosphatase that is required in late G1 for normal G1 cyclin expression and for bud initiation. Overexpression of SIS2, which contains an extremely acidic carboxyl terminal region, stimulated the rate of CLN1, CLN2, SWI4 and CLB5 expression in sit4 mutants. Also, overexpression of SIS2 in a CLN1 cln2 cln3 strain stimulated the growth rate and the rate of CLN1 and CLB5 RNA accumulation during late G1. The SIS2 protein fractionated with nuclei and was released from the nuclear fraction by treatment with either DNase I or micrococcal nuclease, but not by RNase A. This result, combined with the finding that overexpression of SIS2 is extremely to a strain containing lower than normal levels of histones H2A and H2B, suggests that SIS2 might function to stimulate transcription via an interaction with chromatin.


Genetics ◽  
1993 ◽  
Vol 135 (2) ◽  
pp. 321-326 ◽  
Author(s):  
H Mitsuzawa

Abstract The Saccharomyces cerevisiae strain P-28-24C, from which cAMP requiring mutants derived, responded to exogenously added cAMP. Upon the addition of cAMP, this strain showed phenotypes shared by mutants with elevated activity of the cAMP pathway. Genetic analysis involving serial crosses of this strain to a strain with another genetic background revealed that the responsiveness to cAMP results from naturally occurring loss-of-function alleles of PDE1 and PDE2, which encode low and high affinity cAMP phosphodiesterases, respectively. In addition, P-28-24C was found to carry a mutation conferring slow growth that lies in CYR1, which encodes adenylate cyclase, and the slow growth phenotype caused by the cyr1 mutation was suppressed by the pde2 mutation. Therefore P-28-24C is fortuitously a pde1 pde2 cyr1 triple mutant. Responsiveness to cAMP conferred by pde mutations suggests that S. cerevisiae cells are permeable to cAMP to some extent and that the apparent absence of effect of exogenously added cAMP on wild-type cells is due to immediate degradation by cAMP phosphodiesterases.


1991 ◽  
Vol 11 (10) ◽  
pp. 5113-5124 ◽  
Author(s):  
H Wu ◽  
A B Reynolds ◽  
S B Kanner ◽  
R R Vines ◽  
J T Parsons

Transformation of cells by the src oncogene results in elevated tyrosine phosphorylation of two related proteins, p80 and p85 (p80/85). Immunostaining with specific monoclonal antibodies revealed a striking change of subcellular localization of p80/85 in src-transformed cells. p80/85 colocalizes with F-actin in peripheral extensions of normal cells and rosettes (podosomes) of src-transformed cells. Sequence analysis of cDNA clones encoding p80/85 revealed an amino-terminal domain composed of six copies of a direct tandem repeat, each repeat containing 37 amino acids, a carboxyl-terminal SH3 domain, and an interdomain region composed of a highly charged acidic region and a region rich in proline, serine, and threonine. The multidomain structure of p80/85 and its colocalization with F-actin in normal and src-transformed cells suggest that these proteins may associate with components of the cytoskeleton and contribute to organization of cell structure.


1991 ◽  
Vol 11 (10) ◽  
pp. 5113-5124
Author(s):  
H Wu ◽  
A B Reynolds ◽  
S B Kanner ◽  
R R Vines ◽  
J T Parsons

Transformation of cells by the src oncogene results in elevated tyrosine phosphorylation of two related proteins, p80 and p85 (p80/85). Immunostaining with specific monoclonal antibodies revealed a striking change of subcellular localization of p80/85 in src-transformed cells. p80/85 colocalizes with F-actin in peripheral extensions of normal cells and rosettes (podosomes) of src-transformed cells. Sequence analysis of cDNA clones encoding p80/85 revealed an amino-terminal domain composed of six copies of a direct tandem repeat, each repeat containing 37 amino acids, a carboxyl-terminal SH3 domain, and an interdomain region composed of a highly charged acidic region and a region rich in proline, serine, and threonine. The multidomain structure of p80/85 and its colocalization with F-actin in normal and src-transformed cells suggest that these proteins may associate with components of the cytoskeleton and contribute to organization of cell structure.


1996 ◽  
Vol 16 (10) ◽  
pp. 5491-5506 ◽  
Author(s):  
Y Weng ◽  
K Czaplinski ◽  
S W Peltz

To understand the relationship between translation and mRNA decay, we have been studying how premature translation termination accelerates the degradation of mRNAs. In the yeast Saccharomyces cerevisiae, the Upf1 protein (Upf1p), which contains a cysteine- and histidine-rich region and nucleoside triphosphate hydrolysis and helicase motifs, was shown to be a trans-acting factor in this decay pathway. A UPF1 gene disruption results in the stabilization of nonsense-containing mRNAs and leads to a nonsense suppression phenotype. Biochemical analysis of the wild-type Upf1p demonstrated that it has RNA-dependent ATPase, RNA helicase, and RNA binding activities. In the work described in the accompanying paper (Y. Weng, K. Czaplinski, and S. W. Peltz, Mol. Cell. Biol. 16:5477-5490, 1996) mutations in the helicase region of Upf1p that inactivated its mRNA decay function but prevented suppression of leu2-2 and tyr7-1 nonsense alleles are identified. On the basis of these results, we suggested that Upf1p is a multifunctional protein involved in modulating mRNA decay and translation termination at nonsense codons. If this is true, we predict that UPF1 mutations with the converse phenotype should be identified. In this report, we describe the identification and biochemical characterization of mutations in the amino-terminal cysteine- and histidine-rich region of Upf1p that have normal nonsense-mediated mRNA decay activities but are able to suppress leu2-2 and tyr7-1 nonsense alleles. Biochemical characterization of these mutant proteins demonstrated that they have altered RNA binding properties. Furthermore, using the two-hybrid system, we characterized the Upf1p-Upf2p interactions and demonstrated that Upf2p interacts with Upf3p. Mutations in the cysteine- and histidine-rich region of Upf1p abolish Upf1p-Upf2p interaction. On the basis of these results, the role of the Upf complex in nonsense-mediated mRNA decay and nonsense suppression is discussed.


1996 ◽  
Vol 16 (6) ◽  
pp. 2922-2931 ◽  
Author(s):  
D L Frederick ◽  
K Tatchell

The GLC7 gene of Saccharomyces cerevisiae encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is essential for cell growth. We have isolated a previously uncharacterized gene, REG2, on the basis of its ability to interact with Glc7p in the two-hybrid system. Reg2p interacts with Glc7p in vivo, and epitope-tagged derivatives of Reg2p and Glc7p coimmunoprecipitate from cell extracts. The predicted protein product of the REG2 gene is similar to Reg1p, a protein believed to direct PP1 activity in the glucose repression pathway. Mutants with a deletion of reg1 display a mild slow-growth defect, while reg2 mutants exhibit a wild-type phenotype. However, mutants with deletions of both reg1 and reg2 exhibit a severe growth defect. Overexpression of REG2 complements the slow-growth defect of a reg1 mutant but does not complement defects in glycogen accumulation or glucose repression, two traits also associated with a reg1 deletion. These results indicate that REG1 has a unique role in the glucose repression pathway but acts together with REG2 to regulate some as yet uncharacterized function important for growth. The growth defect of a reg1 reg2 double mutant is alleviated by a loss-of-function mutation in the SNF1-encoded protein kinase. The snf1 mutation also suppresses the glucose repression defects of reg1. Together, our data are consistent with a model in which Reg1p and Reg2p control the activity of PP1 toward substrates that are phosphorylated by the Snf1p kinase.


Sign in / Sign up

Export Citation Format

Share Document