scholarly journals Analysis of a developmentally regulated nuclear localization signal in Xenopus.

1992 ◽  
Vol 118 (5) ◽  
pp. 991-1002 ◽  
Author(s):  
D M Standiford ◽  
J D Richter

The 289 residue nuclear oncoprotein encoded by the adenovirus 5 Ela gene contains two peptide sequences that behave as nuclear localization signals (NLS). One signal, located at the carboxy terminus, is like many other known NLSs in that it consists of a short stretch of basic residues (KRPRP) and is constitutively active in cells. The second signal resides within an internal 45 residue region of E1a that contains few basic residues or sequences that resemble other known NLSs. Moreover, this internal signal functions in injected Xenopus oocytes, but not in transfected Xenopus A6 cells, suggesting that it could be regulated developmentally (Slavicek et al. 1989. J. Virol. 63:4047). In this study, we show that the activity of this signal is sensitive to ATP depletion in vivo, efficiently directs the import of a 50 kD fusion protein and can compete with the E1a carboxy-terminal NLS for nuclear import. In addition, we have delineated the precise amino acid residues that comprise the second E1a NLS, and have assessed its utilization during Xenopus embryogenesis. Using amino acid deletion and substitution analyses, we show that the signal consists of the sequence FV(X)7-20MXSLXYM(X)4MF. By expressing in Xenopus embryos a truncated E1a protein that contains only the second NLS and by monitoring its cytoplasmic/nuclear distribution during development with indirect immunofluorescence, we find that the second NLS is utilized up to the early neurula stage. In addition, there appears to be a hierarchy among the embryonic germ layers as to when the second NLS becomes nonfunctional. For this reason, we refer to this NLS as the developmentally regulated nuclear localization signal (drNLS). The implications of these findings for early development are discussed.

2001 ◽  
Vol 114 (2) ◽  
pp. 367-376
Author(s):  
K. Djabali ◽  
V.M. Aita ◽  
A.M. Christiano

Hair follicle cycling is an exquisitely regulated and dynamic process consisting of phases of growth, regression and quiescence. The transitions between the phases are governed by a growing number of regulatory proteins, including transcription factors. The hairless (hr) gene encodes a putative transcription factor that is highly expressed in the skin, where it appears to be an essential regulator during the regression of the catagen hair follicle. In hairless mice, as well as humans with congenital atrichia, the absence of hr gene function initiates a premature and abnormal catagen due to a dysregulation of apoptosis and cell adhesion, and defects in the signaling required for hair follicle remodeling. Here, we report structure-function studies of the hairless gene product, in which we identify a novel bipartite nuclear localization signal (NLS) of the form KRA(X13) PKR. Deletion analysis of the mouse hr gene mapped the NLS to amino acid residues 409–427. Indirect immunofluorescence microscopy of cells transiently transfected with hairless-green fluorescent fusion proteins demonstrated that these amino acid residues are necessary and sufficient for nuclear localization. Furthermore, nuclear fractionation analysis revealed that the hr protein is associated with components of the nuclear matrix.


1993 ◽  
Vol 105 (2) ◽  
pp. 481-488 ◽  
Author(s):  
J.V. Frangioni ◽  
B.G. Neel

We have constructed a general purpose mammalian expression vector for the study of intracellular protein targeting. The vector, p3PK, facilitates construction of N- and/or C-terminal fusions of an amino acid sequence of interest to the normally cytosolic protein chicken muscle pyruvate kinase (CMPK). The vector has been engineered such that any fusion construct can be subcloned into the versatile pJx omega family of mammalian expression vectors and into pGEX bacterial expression vectors, for the generation of affinity reagents. In this paper, we demonstrate the general utility of p3PK by redirecting CMPK to mitochondria (using the twelve amino acid pre-sequence of yeast cytochrome c oxidase subunit IV) and to the nucleus (using a putative eight amino acid nuclear localization signal from human nuclear lamins A and C). We also report that, contrary to the predictions of previously published work, substitution of a critical residue in the nuclear lamin A/C nuclear localization signal (the equivalent of lysine 128 in the SV40 large T nuclear localization signal) retains nuclear localization, and discuss how amino acid context might affect targeting to the nucleus.


1990 ◽  
Vol 10 (8) ◽  
pp. 4139-4145 ◽  
Author(s):  
S T Nath ◽  
D P Nayak

Polymerase basic protein 1 (PB1) of influenza virus (A/WSN/33), when expressed from cloned cDNA in the absence of other viral proteins, accumulates in the nucleus. We have examined the location and nature of the nuclear localization signal of PB1 by using deletion mutants and chimeric constructions with chicken muscle pyruvate kinase, a cytoplasmic protein. Our studies showed some novel features of the nuclear localization signal of PB1. The signal was present internally within residues 180 to 252 of PB1. Moreover, unlike most nuclear localization signals, it was not a single stretch of contiguous amino acids. Instead, it possessed two discontinuous regions separated by an intervening sequence which could be deleted without affecting its nuclear localization property. On the other hand, deletion of either of the two signal regions rendered the protein cytoplasmic, indicating that the function of both regions is required for nuclear localization and that one region alone is not sufficient. Both of these signal regions contained short stretches of basic residues. Possible ways by which this novel bipartite signal can function in nuclear localization are discussed.


2011 ◽  
Vol 286 (27) ◽  
pp. 23831-23841 ◽  
Author(s):  
Soma Ghosh ◽  
Alex P. Vassilev ◽  
Junmei Zhang ◽  
Yingming Zhao ◽  
Melvin L. DePamphilis

Initiation of eukaryotic genome duplication begins when a six-subunit origin recognition complex (ORC) binds to DNA. However, the mechanism by which this occurs in vivo and the roles played by individual subunits appear to differ significantly among organisms. Previous studies identified a soluble human ORC(2–5) complex in the nucleus, an ORC(1–5) complex bound to chromatin, and an Orc6 protein that binds weakly, if at all, to other ORC subunits. Here we show that stable ORC(1–6) complexes also can be purified from human cell extracts and that Orc6 and Orc1 each contain a single nuclear localization signal that is essential for nuclear localization but not for ORC assembly. The Orc6 nuclear localization signal, which is essential for Orc6 function, is facilitated by phosphorylation at its cyclin-dependent kinase consensus site and by association with Kpna6/1, nuclear transport proteins that did not co-purify with other ORC subunits. These and other results support a model in which Orc6, Orc1, and ORC(2–5) are transported independently to the nucleus where they can either assemble into ORC(1–6) or function individually.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2034-2034
Author(s):  
Masafumi Yamaguchi ◽  
Kingo Fujimura ◽  
Hanae Toga-Yamaguchi ◽  
Valentina Svetic ◽  
Naoki Okamura ◽  
...  

Abstract Shwachman-Diamond syndrome (SDS) is an autosomal-recessive disorder characterized by exocrine pancreatic insufficiency and bone marrow failure. The SDS disease locus was mapped to chromosome 7q11. We have previously reported that Shwachman-Bodian- Diamond syndrome (SBDS) gene is not required for neutrophil maturation. However, SBDS knockdown cells were sensitive to apoptotic stimuli, indicating that SBDS acts to maintain survival of granulocyte precursor cells. (Exp Hematol35; 579, 2007). A wide variety of mutations in SBDS gene has been identified, and almost of all patients show truncated immature proteins, p.K62X (c.183_184TA>CT) or p.C84fsX3 (c.258+2T>C). However, it is not yet clear how these truncated proteins affect cellular processes that result in the SDS phenotype. The SBDS protein is localized to the nucleoli but does not have the canonical nuclear localization signal. In order to clarify the molecular basis of pathogenicity of mutated SBDS proteins, we explored the subcellular distribution of normal and mutant SBDS proteins in Hela and 32Dcl3 cells. Using various N-terminal and C-terminal deletion constructs, we found N-terminal region, domain I (1-87 amino acid residue) in particular, was necessary to localize to the nucleus. The disease related mutations (C31W, K33E, N34I, L71P) and the mutations which are conserved among the species in the domain I (E44K, K62E, D70N, E82K) were generated. C31W and N34I mutants failed to localize SBDS to the nuclei. The SV40 derived nuclear localization signal was fused to these mutated SBDS protein, and these proteins were clearly localized to the nuclei. In addition to the mislocalization, the protein expression level of these mutants showed a dramatic decrease compared to the wild type. We also established SBDS wild type and domain I overexpressed 32Dcl3 cell. SBDS wild type overexpressed cells could differentiate to normal neutrophils in the presence of mG-CSF, however domain I overexpressed cells did not differentiate. Almost of all cells showed apoptosis in this domain I overexpressed cells in the presence of mG-CSF, and this was very similar like SBDS RNAi knockdown cells. The localization of endogenous SBDS protein was also analyzed in this domain I overexpressed cells. The domain I was concentrated to nuclei, however endogenous SBDS protein was diffused to cytosol. Conclusions: The present findings enable us to document the nuclear localization signals in SBDS domain I, and that the shuttling protein would promote SBDS to nuclei. These results also showed that mislocalization and/or low expression level of mutated SBDS protein would cause SDS.


2013 ◽  
Vol 69 (12) ◽  
pp. 2495-2505 ◽  
Author(s):  
Gergely Róna ◽  
Mary Marfori ◽  
Máté Borsos ◽  
Ildikó Scheer ◽  
Enikő Takács ◽  
...  

Phosphorylation adjacent to nuclear localization signals (NLSs) is involved in the regulation of nucleocytoplasmic transport. The nuclear isoform of human dUTPase, an enzyme that is essential for genomic integrity, has been shown to be phosphorylated on a serine residue (Ser11) in the vicinity of its nuclear localization signal; however, the effect of this phosphorylation is not yet known. To investigate this issue, an integrated set of structural, molecular and cell biological methods were employed. It is shown that NLS-adjacent phosphorylation of dUTPase occurs during the M phase of the cell cycle. Comparison of the cellular distribution of wild-type dUTPase with those of hyperphosphorylation- and hypophosphorylation-mimicking mutants suggests that phosphorylation at Ser11 leads to the exclusion of dUTPase from the nucleus. Isothermal titration microcalorimetry and additional independent biophysical techniques show that the interaction between dUTPase and importin-α, the karyopherin molecule responsible for `classical' NLS binding, is weakened significantly in the case of the S11E hyperphosphorylation-mimicking mutant. The structures of the importin-α–wild-type and the importin-α–hyperphosphorylation-mimicking dUTPase NLS complexes provide structural insights into the molecular details of this regulation. The data indicate that the post-translational modification of dUTPase during the cell cycle may modulate the nuclear availability of this enzyme.


2005 ◽  
Vol 25 (7) ◽  
pp. 2644-2649 ◽  
Author(s):  
Beth Shafer ◽  
Chun Chu ◽  
Aaron J. Shatkin

ABSTRACT A characteristic feature of gene expression in eukaryotes is the addition of a 5′-terminal 7-methylguanine cap (m7GpppN) to nascent pre-mRNAs in the nucleus catalyzed by capping enzyme and cap methyltransferase. Small interfering RNA (siRNA) knockdown of cap methyltransferase in HeLa cells resulted in apoptosis as measured by terminal deoxynucleotidyltransferase-mediated dUTP-tetramethylrhodamine nick end labeling assay, demonstrating the importance of mRNA 5′-end methylation for mammalian cell viability. Nuclear localization of cap methyltransferase is mediated by interaction with importin-α, which facilitates its transport and selective binding to transcripts containing 5′-terminal GpppN. The methyltransferase 96-144 region has been shown to be necessary for importin binding, and N-terminal fusion of this sequence to nonnuclear proteins proved sufficient for nuclear localization. The targeting sequence was narrowed to amino acids 120 to 129, including a required 126KRK. Although full-length methyltransferase (positions 1 to 476) contains the predicted nuclear localization signals 57RKRK, 80KKRK, 103KKRKR, and 194KKKR, mutagenesis studies confirmed functional motifs only at positions 80, 103, and the previously unrecognized 126KRK. All three motifs can act as alternative nu clear targeting signals. Expression of N-truncated cap methyltransferase (120 to 476) restored viability of methyltransferase siRNA knocked-down cells. However, an enzymatically active 144-476 truncation mutant missing the three nuclear localization signals was mostly cytoplasmic and ineffective in preventing siRNA-induced loss of viability.


2020 ◽  
Vol 58 (6) ◽  
pp. 675-679
Author(s):  
Juri Kim ◽  
Mee Young Shin ◽  
Soon-Jung Park

MYB2 protein was identified as a transcription factor that showed encystation-induced expression in <i>Giardia lamblia</i>. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of <i>G. lamblia</i> MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of <i>G. lamblia</i> glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507–#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLS<sub>GlMYB2</sub>. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLS<sub>GlMYB2</sub> and <i>G. lamblia</i> glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in <i>G. lamblia.</i>


2000 ◽  
Vol 81 (9) ◽  
pp. 2231-2244 ◽  
Author(s):  
Kyra Giesen ◽  
Klaus Radsak ◽  
Elke Bogner

Human cytomegalovirus (HCMV) DNA-binding protein pUL56 is thought to be involved in the cleavage/packaging process of viral DNA and therefore needs to be transported into the nucleus. By using indirect immunofluorescence analysis, HCMV pUL56 (p130) was found to be localized predominantly in the nucleus of infected cells. Solitary expression of wild-type as well as epitope-tagged pUL56 also resulted in nuclear distribution after transfection, suggesting the presence of an endogenous nuclear localization signal (NLS). Deletion of a carboxy-terminal stretch of basic amino acids (aa 816–827) prevented nuclear translocation, indicating that the sequence RRVRATRKRPRR of HCMV pUL56 mediates nuclear targetting. The signal character of the NLS sequence was demonstrated by successful transfer of the NLS to a reporter protein chimera. Furthermore, sequential substitutions of pairs of amino acids by alanine in the context of the reporter protein as well as substitutions within the full-length pUL56 sequence indicated that residues at positions 7 and 8 of the NLS (R and K at positions 822 and 823 of pUL56) were essential for nuclear translocation. In order to identify the transport machinery involved, the potential of pUL56 to bind importin α (hSRP1α) was examined. Clear evidence of a direct interaction of a carboxy-terminal portion as well as the NLS of pUL56 with hSRP1α was provided by in vitro binding assays. In view of these findings, it is suggested that nuclear translocation of HCMV pUL56 is mediated by the importin-dependent pathway.


Sign in / Sign up

Export Citation Format

Share Document