scholarly journals Translocation and insertion of precursor proteins into isolated outer membranes of mitochondria.

1993 ◽  
Vol 121 (6) ◽  
pp. 1233-1243 ◽  
Author(s):  
A Mayer ◽  
R Lill ◽  
W Neupert

Nuclear-encoded proteins destined for mitochondria must cross the outer or both outer and inner membranes to reach their final sub-mitochondrial locations. While the inner membrane can translocate preproteins by itself, it is not known whether the outer membrane also contains an endogenous protein translocation activity which can function independently of the inner membrane. To selectively study the protein transport into and across the outer membrane of Neurospora crassa mitochondria, outer membrane vesicles were isolated which were sealed, in a right-side-out orientation, and virtually free of inner membranes. The vesicles were functional in the insertion and assembly of various outer membrane proteins such as porin, MOM19, and MOM22. Like with intact mitochondria, import into isolated outer membranes was dependent on protease-sensitive surface receptors and led to correct folding and membrane integration. The vesicles were also capable of importing a peripheral component of the inner membrane, cytochrome c heme lyase (CCHL), in a receptor-dependent fashion. Thus, the protein translocation machinery of the outer mitochondrial membrane can function as an independent entity which recognizes, inserts, and translocates mitochondrial preproteins of the outer membrane and the intermembrane space. In contrast, proteins which have to be translocated into or across the inner membrane were only specifically bound to the vesicles, but not imported. This suggests that transport of such proteins involves the participation of components of the intermembrane space and/or the inner membrane, and that in these cases the outer membrane translocation machinery has to act in concert with that of the inner membrane.

2021 ◽  
Vol 12 ◽  
Author(s):  
Lucy Troman ◽  
Ian Collinson

Gram-negative bacteria are contained by an envelope composed of inner and outer-membranes with the peptidoglycan (PG) layer between them. Protein translocation across the inner membrane for secretion, or insertion into the inner membrane is primarily conducted using the highly conserved, hourglass-shaped channel, SecYEG: the core-complex of the Sec translocon. This transport process is facilitated by interactions with ancillary subcomplex SecDF-YajC (secretion) and YidC (insertion) forming the holo-translocon (HTL). This review recaps the transport process across the inner-membrane and then further explores how delivery and folding into the periplasm or outer-membrane is achieved. It seems very unlikely that proteins are jettisoned into the periplasm and left to their own devices. Indeed, chaperones such as SurA, Skp, DegP are known to play a part in protein folding, quality control and, if necessary degradation. YfgM and PpiD, by their association at the periplasmic surface of the Sec machinery, most probably are also involved in some way. Yet, it is not entirely clear how outer-membrane proteins are smuggled past the proteases and across the PG to the barrel-assembly machinery (BAM) and their final destination. Moreover, how can this be achieved, as is thought, without the input of energy? Recently, we proposed that the Sec and BAM translocons interact with one another, and most likely other factors, to provide a conduit to the periplasm and the outer-membrane. As it happens, numerous other specialized proteins secretion systems also form trans-envelope structures for this very purpose. The direct interaction between components across the envelope raises the prospect of energy coupling from the inner membrane for active transport to the outer-membrane. Indeed, this kind of long-range energy coupling through large inter-membrane assemblies occurs for small molecule import (e.g., nutrient import by the Ton complex) and export (e.g., drug efflux by the AcrAB-TolC complex). This review will consider this hypothetical prospect in the context of outer-membrane protein biogenesis.


Toxins ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 414 ◽  
Author(s):  
Justin Nice ◽  
Nataliya Balashova ◽  
Scott Kachlany ◽  
Evan Koufos ◽  
Eric Krueger ◽  
...  

The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, has been associated with localized aggressive periodontitis (LAP). In particular, highly leukotoxic strains of A. actinomycetemcomitans have been more closely associated with this disease, suggesting that LtxA is a key virulence factor for A. actinomycetemcomitans. LtxA is secreted across both the inner and outer membranes via the Type I secretion system, but has also been found to be enriched within outer membrane vesicles (OMVs), derived from the bacterial outer membrane. We have characterized the association of LtxA with OMVs produced by the highly leukotoxic strain, JP2, and investigated the interaction of these OMVs with host cells to understand how LtxA is delivered to host cells in this OMV-associated form. Our results demonstrated that a significant fraction of the secreted LtxA exists in an OMV-associated form. Furthermore, we have discovered that in this OMV-associated form, the toxin is trafficked to host cells by a cholesterol- and receptor-independent mechanism in contrast to the mechanism by which free LtxA is delivered. Because OMV-associated toxin is trafficked to host cells in an entirely different manner than free toxin, this study highlights the importance of studying both free and OMV-associated forms of LtxA to understand A. actinomycetemcomitans virulence.


2019 ◽  
Vol 85 (19) ◽  
Author(s):  
Tanja Fischer ◽  
Martin Schorb ◽  
Greta Reintjes ◽  
Androniki Kolovou ◽  
Rachel Santarella-Mellwig ◽  
...  

ABSTRACT Large surface-to-volume ratios provide optimal nutrient uptake conditions for small microorganisms in oligotrophic habitats. The surface area can be increased with appendages. Here, we describe chains of interconnecting vesicles protruding from cells of strain Hel3_A1_48, affiliating with Formosa spp. within the Flavobacteriia and originating from coastal free-living bacterioplankton. The chains were up to 10 μm long and had vesicles emanating from the outer membrane with a single membrane and a size of 80 to 100 nm by 50 to 80 nm. Cells extruded membrane tubes in the exponential phase, whereas vesicle chains dominated on cells in the stationary growth phase. This formation is known as pearling, a physical morphogenic process in which membrane tubes protrude from liposomes and transform into chains of interconnected vesicles. Proteomes of whole-cell membranes and of detached vesicles were dominated by outer membrane proteins, including the type IX secretion system and surface-attached peptidases, glycoside hydrolases, and endonucleases. Fluorescein-labeled laminarin stained the cells and the vesicle chains. Thus, the appendages provide binding domains and degradative enzymes on their surfaces and probably storage volume in the vesicle lumen. Both may contribute to the high abundance of these Formosa-affiliated bacteria during laminarin utilization shortly after spring algal blooms. IMPORTANCE Microorganisms produce membrane vesicles. One synthesis pathway seems to be pearling that describes the physical formation of vesicle chains from phospholipid vesicles via extended tubes. Bacteria with vesicle chains had been observed as well as bacteria with tubes, but pearling was so far not observed. Here, we report the observation of, initially, tubes and then vesicle chains during the growth of a flavobacterium, suggesting biopearling of vesicle chains. The flavobacterium is abundant during spring bacterioplankton blooms developing after algal blooms and has a special set of enzymes for laminarin, the major storage polysaccharide of microalgae. We demonstrated with fluorescently labeled laminarin that the vesicle chains bind laminarin or contain laminarin-derived compounds. Proteomic analyses revealed surface-attached degradative enzymes on the outer membrane vesicles. We conclude that the large surface area and the lumen of vesicle chains may contribute to the ecological success of this marine bacterium.


1989 ◽  
Vol 109 (6) ◽  
pp. 2603-2616 ◽  
Author(s):  
L Pon ◽  
T Moll ◽  
D Vestweber ◽  
B Marshallsay ◽  
G Schatz

To identify the membrane regions through which yeast mitochondria import proteins from the cytoplasm, we have tagged these regions with two different partly translocated precursor proteins. One of these was bound to the mitochondrial surface of ATP-depleted mitochondria and could subsequently be chased into mitochondria upon addition of ATP. The other intermediate was irreversibly stuck across both mitochondrial membranes at protein import sites. Upon subfraction of the mitochondria, both intermediates cofractionated with membrane vesicles whose buoyant density was between that of inner and outer membranes. When these vesicles were prepared from mitochondria containing the chaseable intermediate, they internalized it upon addition of ATP. A non-hydrolyzable ATP analogue was inactive. This vesicle fraction contained closed, right-side-out inner membrane vesicles attached to leaky outer membrane vesicles. The vesicles contained the mitochondrial binding sites for cytoplasmic ribosomes and contained several mitochondrial proteins that were enriched relative to markers of inner or outer membranes. By immunoelectron microscopy, two of these proteins were concentrated at sites where mitochondrial inner and outer membranes are closely apposed. We conclude that these vesicles contain contact sites between the two mitochondrial membranes, that these sites are the entry point for proteins into mitochondria, and that the isolated vesicles are still translocation competent.


2006 ◽  
Vol 189 (5) ◽  
pp. 1627-1632 ◽  
Author(s):  
Maria D. Bodero ◽  
M. Carolina Pilonieta ◽  
George P. Munson

ABSTRACT The expression of the inner membrane protein NlpA is repressed by the enterotoxigenic Escherichia coli (ETEC) virulence regulator Rns, a member of the AraC/XylS family. The Rns homologs CfaD from ETEC and AggR from enteroaggregative E. coli also repress expression of nlpA. In vitro DNase I and potassium permanganate footprinting revealed that Rns binds to a site overlapping the start codon of nlpA, preventing RNA polymerase from forming an open complex at nlpAp. A second Rns binding site between positions −152 and −195 relative to the nlpA transcription start site is not required for repression. NlpA is not essential for growth of E. coli under laboratory conditions, but it does contribute to the biogenesis of outer membrane vesicles. As outer membrane vesicles have been shown to contain ETEC heat-labile toxin, the repression of nlpA may be an indirect mechanism through which the virulence regulators Rns and CfaD limit the release of toxin.


1996 ◽  
Vol 16 (8) ◽  
pp. 4035-4042 ◽  
Author(s):  
D A Court ◽  
F E Nargang ◽  
H Steiner ◽  
R S Hodges ◽  
W Neupert ◽  
...  

Tom22 is an essential component of the protein translocation complex (Tom complex) of the mitochondrial outer membrane. The N-terminal domain of Tom22 functions as a preprotein receptor in cooperation with Tom20. The role of the C-terminal domain of Tom22, which is exposed to the intermembrane space (IMS), in its own assembly into the Tom complex and in the import of other preproteins was investigated. The C-terminal domain of Tom22 is not essential for the targeting and assembly of this protein, as constructs lacking part or all of the IMS domain became imported into mitochondria and assembled into the Tom complex. Mutant strains of Neurospora expressing the truncated Tom22 proteins were generated by a novel procedure. These mutants displayed wild-type growth rates, in contrast to cells lacking Tom22, which are not viable. The import of proteins into the outer membrane and the IMS of isolated mutant mitochondria was not affected. Some but not all preproteins destined for the matrix and inner membrane were imported less efficiently. The reduced import was not due to impaired interaction of presequences with their specific binding site on the trans side of the outer membrane. Rather, the IMS domain of Tom22 appears to slightly enhance the efficiency of the transfer of these preproteins to the import machinery of the inner membrane.


2013 ◽  
Vol 79 (6) ◽  
pp. 1874-1881 ◽  
Author(s):  
Carla Pérez-Cruz ◽  
Ornella Carrión ◽  
Lidia Delgado ◽  
Gemma Martinez ◽  
Carmen López-Iglesias ◽  
...  

ABSTRACTOuter membrane vesicles (OMVs) from Gram-negative bacteria are known to be involved in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. An ultrastructural study of the Antarctic psychrotolerant bacteriumShewanella vesiculosaM7Thas revealed that this Gram-negative bacterium naturally releases conventional one-bilayer OMVs through a process in which the outer membrane is exfoliated and only the periplasm is entrapped, together with a more complex type of OMV, previously undescribed, which on formation drag along inner membrane and cytoplasmic content and can therefore also entrap DNA. These vesicles, with a double-bilayer structure and containing electron-dense material, were visualized by transmission electron microscopy (TEM) after high-pressure freezing and freeze-substitution (HPF-FS), and their DNA content was fluorometrically quantified as 1.8 ± 0.24 ng DNA/μg OMV protein. The new double-bilayer OMVs were estimated by cryo-TEM to represent 0.1% of total vesicles. The presence of DNA inside the vesicles was confirmed by gold DNA immunolabeling with a specific monoclonal IgM against double-stranded DNA. In addition, a proteomic study of purified membrane vesicles confirmed the presence of plasma membrane and cytoplasmic proteins in OMVs from this strain. Our data demonstrate the existence of a previously unobserved type of double-bilayer OMV in the Gram-negative bacteriumShewanella vesiculosaM7Tthat can incorporate DNA, for which we propose the name outer-inner membrane vesicle (O-IMV).


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Daniel Yara ◽  
Regis Stentz ◽  
Tom Wileman ◽  
Stephanie Schuller

Enterohaemorrhagic E. coli (EHEC) may instigate bloody diarrhoea and haemolytic uraemic syndrome (HUS) due to Shiga toxin (Stx) production. Stx has been detected within outer membrane vesicles (OMVs), which are membrane-derived nanosized proteoliposomes. During colonisation, EHEC encounters many environmental surroundings such as the presence of bile salts and carbon dioxide (CO2). Here, the influence of different intestinal cues on EHEC OMV production was studied. OMV yield was quantified by densitometric analysis of outer membrane proteins F/C and A, following OMV protein separation by SDS-PAGE. Compared to cultures in Luria broth, higher OMV yields were attained following culture in human cell growth medium and simulated colonic environmental medium, with further increases in the presence of bile salts. Interestingly, lower yields were attained in the presence of T84 cells and CO2. The interaction between OMVs and different human cells was also examined by fluorescence microscopy. Here, OMVs incubated with cells showed internalisation by semi confluent but not fully confluent T84 cell monolayers. OMVs were internalised into the lysosomes in confluent Vero and Caco-2 cells, with Stx being transported to the Golgi and then the Endoplasmic reticulum. OMVs were detected within polarised Caco-2 cells, with no impact on the transepithelial electrical resistance by 24 hours. These results suggest that the colonic environmental factors influences OMV production in vivo. Additionally, results highlight the discrepancies which arise when using different cells lines to examine the intestine. Nevertheless, coupled with Stx, OMVs may serve as tools of EHEC which are involved in HUS development.


2001 ◽  
Vol 2 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Darren J. Trott ◽  
David P. Alt ◽  
Richard L. Zuerner ◽  
Michael J. Wannemuehler ◽  
Thaddeus B. Stanton

AbstractLittle is known about the outer membrane structure ofBrachyspira hyodysenteriae and Brachyspira pilosicolior the role of outer membrane proteins (OMPs) in host colonization and the development of disease. The isolation of outer membrane vesicles fromB. hyodysenteriaehas confirmed that cholesterol is a significant outer membrane constituent and that it may impart unique characteristics to the lipid bilayer structure, including a reduced density. Unique proteins that have been identified in theB. hyodysenteriaeouter membrane include the variable surface proteins (Vsp) and lipoproteins such as SmpA and BmpB. While the function of these proteins remains to be determined, there is indirect evidence to suggest that they may be involved in immune evasion. These data may explain the ability of the organism to initiate chronic infection. OMPs may be responsible for the unique attachment ofB. pilosicolito colonic epithelial cells; however, the onlyB. pilosicoliOMPs that have been identified to date are involved in metabolism. In order to identify furtherB. pilosicoliOMPs we have isolated membrane vesicle fractions from porcine strain 95–1000 by osmotic lysis and isopycnic centrifugation. The fractions were free of contamination by cytoplasm and fla-gella and contained outer membrane. Inner membrane contamination was minimal but could not be completely excluded. An abundant 45-kDa, heat-modifiable protein was shown to have significant homology withB. hyodysenteriaeVsp, and monoclonal antibodies were produced that reacted with fiveB. pilosicoli-specificmembrane protein epitopes. The first of these proteins to be characterized is a unique surface-exposed lipoprotein.


Sign in / Sign up

Export Citation Format

Share Document